Lúa

único satélite natural da Terra

A Lúa é o único satélite natural da Terra[1][2][3], visible desde esta só en parte e baixo formas distintas, chamadas fases, segundo a posición que teña respecto da Terra e o lado por onde reciba a luz do Sol. Esferoide achatado coa zona máis plana preto da Terra,[4] cun diámetro de 3476 km é o quinto satélite máis grande do Sistema Solar, mentres que en canto ao tamaño proporcional respecto do seu planeta é o satélite máis grande[5]: un cuarto do diámetro da Terra e 1/81 da súa masa. Logo de Ío, é ademais o segundo satélite máis denso. A falta de atmosfera protectora densa fai que na súa superficie se reciba unhas 160 veces máis radiación que na da Terra.[4]

Lúa ☾
Lúa, dende a Terra, ano 2006.
Descubrimento
Descuberta por civilizacións antigas
Descuberta na antigüidade
Características orbitais
Raio medio 384 400 km
Excentricidade 0,0549
Período orbital 27 d 7 h 43,7 m
Inclinación orbital 5,1454°
Satélite da Terra
Características físicas
Diámetro ecuatorial 3474,8 km
Área da superficie 38 000 000 km²
Masa 7,349 × 10²² kg
Densidade media 3340 kg/m³
Gravidade á superficie 1,62 m/s²
Período de rotación 27 d 7 h 43,7 m
Inclinación axial 1,5424°
Albedo 0,12
Temp. á superficie
mín med máx
K 250 K K
Características atmosféricas
Presión atmosférica 3 × 10-13kPa
Helio 25%
Neon 25%
Hidróxeno 23%
Argon 20%
Metano ?
Amoníaco ?
Dióxido de carbono trazas
Composición da crodia
Osíxeno 43%
Silicio 21%
Aluminio 10%
Calcio 9%
Ferro 9%
Magnesio 5%
Titanio 2%
Níquel 0,6%
Sodio 0,3%
Cromo 0,2%
Potasio 0,1%
Manganeso 0,1%
Xofre 0,1%
Fósforo 500 ppm
Carbono 100 ppm
Nitróxeno 100 ppm
Hidróxeno 50 ppm
Helio 20 ppm

A rotación da Lúa foise sincronizando ó longo do tempo coa da Terra, de xeito que sempre se observa aproximadamente a mesma parte de superficie dende a Terra. O hemisferio visible está marcado con escuros mares lunares de orixe volcánico entre as brillantes montañas antigas e os destacados astroblemas. Malia ser en aparencia o obxecto máis brillante no ceo despois do Sol, a súa superficie é en realidade moi escura, cunha reflexión similar á do carbón. A súa prominencia no ceo e o seu ciclo regular de fases fixeron da Lúa un obxecto con importante influencia cultural desde a antigüidade tanto na linguaxe, como no calendario, a arte ou a mitoloxía. A influencia gravitatoria da Lúa produce as mareas e o aumento da duración do día. A distancia orbital da Lúa, preto de trinta veces o diámetro da Terra, fai que se vexa no ceo co mesmo tamaño que o Sol e permite que a Lúa cubra exactamente ao Sol nas eclipses solares totais. Esta coincidencia de tamaño visual aparente é unha coincidencia. A distancia lineal da Lúa á Terra está aumentando a un ritmo de 3,82 ± 0,07 cm por ano, aínda que esta taxa non é constante.[6]

A Lúa é o único corpo celeste no que o ser humano realizou un descenso tripulado. Aínda que o programa Lúa da Unión Soviética foi o primeiro en alcanzar a Lúa cunha nave espacial non tripulada, o programa Apolo de Estados Unidos conseguiu as únicas misións tripuladas ata a data, comezando coa primeira órbita lunar tripulada polo Apollo 8 en 1968, e seis aluaxes tripuladas cun total de doce astronautas[4] entre 1969 e 1972, sendo o primeiro o Apollo 11 en 1969. Estas misións regresaron con máis de 380 kg de rocha lunar, que permitiron alcanzar unha detallada comprensión xeolóxica das orixes da Lúa (crese que se formou fai 4500 millóns de anos logo dun grande impacto), a formación da súa estrutura interna e a súa posterior historia.

Desde a misión do Apollo 17 en 1972, foi visitada unicamente por sondas espaciais non tripuladas, en particular polos astromóbiles soviéticos Lunokhod. Desde 2004, o Xapón, a China, a India, os Estados Unidos, e a Axencia Espacial Europea enviaron orbitadores. Estas naves espaciais confirmaron o descubrimento de auga xeada fixada ao regolito lunar en cráteres que se atopan na zona de sombra permanente e están situados nos polos. Planeáronse futuras misións tripuladas á Lúa, tanto por gobernos como por empresas privadas, pero non se puxeron en marcha aínda. A Lúa mantense, baixo o tratado do espazo exterior, libre para a exploración de calquera nación con fins pacíficos.[7]

Etimoloxía editar

A palabra que designa ao satélite da Terra lúa, procede do latín. Nesta lingua era orixinalmente o feminino dun adxectivo en -no- *leuk-s-no, 'luminoso'. A palabra lúa, polo tanto significa 'luminosa', 'a que ilumina'. Este adxectivo latino deriva da raíz *lūc-/lǔc- ('brillar', 'ser luminoso'), de onde proceden igualmente lux ('luz'), luceo ('lucir'), lumen ('luz') etc. Á súa vez, esta raíz procede dunha raíz indoeuropea *leuk- que se encontra noutras linguas, en termos relacionados coa luz, como o grego λύχνος, "lýksnos", 'lámpada'. Probablemente, o epíteto *leuksno-/ *louksno-, 'a luminosa', xa era utilizado para designar a lúa en protoindoeuropeo.

No indoeuropeo, existiu outro nome masculino para a Lúa, formado sobre a raíz *mēns-, do que se conservan formas en varias linguas, como o grego μηνός, "menós", 'lúa', e incluso co sentido primitivo en linguas itálicas, como na umbra (ablativo singular) "menzne", 'Lúa'. En latín esta forma *mēns- evolucionou semánticamente para designar o 'mes'. De lúa procede o termo luns, que xa en latín designaba o 'día da lúa' (dies lunae).[8]

Formación da Lúa editar

 
Representación artística do impacto xigante que é a hipótese de como se formou a Lúa.
Artigo principal: Big Splash.

A orixe da Lúa é incerta, mais as similitudes ao descubrir que a composición da Lúa era a mesma que a da superficie terrestre supúxose que a súa orixe tiña que vir da propia Terra. Varios mecanismos foron propostos para explicar a formación da Lúa fai 4,527 ± 0,010 millóns de anos. Esta idade é calculada en base á datación do isótopo das rochas lunares, entre 30 e 50 millóns de anos logo da orixe do Sistema Solar.[9] Estes inclúen a fisión da Lúa desde a codia terrestre a través de forzas centrífugas,[10] que deberían haber requirido tamén un xiro inicial da Terra;[11] a atracción gravitacional da Lúa en estado de formación,[12] que houbese requirido unha extensión inviable da atmosfera para disipar a enerxía da Lúa, que se atopaba pasando;[11] e a co-formación da Lúa e a Terra xuntas no disco de crecemento primordial, aínda que isto non explica o esgotamento de ferro en estado metálico na Lúa.[11] Estas hipóteses tampouco poden explicar o forte momento angular no sistema Terra-Lúa.[13]

 
Animación (non esta a escala) de Tea impactando contra a Terra provocando a formación da Lúa.

Nese aspecto, algúns astrónomos e xeólogos alegan que a Lúa teríase desprendido dunha masa incandescente de rocha licuefeita primordial, acabada de formar, a través da forza centrífuga. Un corpo tan grande en relación ao noso planeta dificilmente podía ser capturado nin tampouco era probable que se formara xunto á Terra. A hipótese xeral hoxe en día é que o sistema Terra-Lúa formouse como resultado dun grande impacto: na que un corpo celeste do tamaño aproximado de Marte (chamado Tea) colidiu coa nova Terra, a enorme enerxía fornecida polo choque fundiu a codia terrestre ao completo e guindou gran cantidade de restos incandescentes ao espazo. Co tempo, formouse un anel de rochas ao redor do noso planeta ata que, por acrecentamento, formouse a Lúa.[14] Crese que impactos xigantescos eran comúns no Sistema Solar primitivo. As modelaxes dun grande impacto a través de simulacións computacionais concordan coas medicións do momento angular do sistema Terra-Lúa, e o pequeno tamaño do núcleo lunar; á súa vez demostran que a maior parte da Lúa provén do impacto, non da nova Terra.[15] Con todo, algúns meteoritos demostran que as composicións isotópicas do osíxeno e o tungsteno doutros corpos do Sistema Solar interior tales como Marte e 4 Vesta son moi distintas ás da Terra, mentres que a Terra e a Lúa posúen composicións isotópicas practicamente idénticas. O mesturado do material evaporado posterior ao impacto entre a Terra e a Lúa puido haber equiparado as composicións,[16] aínda que isto é debatido.[17] Esta teoría tamén explica a grande inclinación axial do eixe de rotación terrestre que sería provocada polo impacto.

Trala súa formación, a Lúa experimentou un período cataclísmico, datado en torno a fai 3800-4000 millóns de anos, no que a Lúa e os outros corpos do Sistema Solar interior sufriron violentos impactos de grandes asteroides. Este período, coñecido como bombardeo intenso tardío, formou a maior parte dos cráteres observados nos biosbardos, así como en Mercurio. A análise da superficie da Lúa dá importantes datos sobre este período final na formación do Sistema solar. Posteriormente produciuse unha época de vulcanismo consistente na emisión de grandes cantidades de lava, que encheron as maiores concas de impacto formando os mares lunares e que acabou fai 3.000 millóns de anos. Desde entón, pouco máis acaeceu na superficie lunar que a formación de novos cráteres debido ao impacto de asteroides.

Hai aínda un grupo de teóricos que consideran que, sexa cal fose a forma como xurdiron, habería dous satélites naturais orbitando a Terra: o maior sería a Lúa, e o menor volvería bater coa Terra, formando as masas continentais.

Recentemente, con todo, os datos enviados pola sonda xaponesa SELENE (acrónimo de Selenological and Engineering Explorer) mostraron que devandito vulcanismo durou máis do que se pensaba, habendo acabado na cara oculta fai 2500 millóns de anos.[18]

A importante cantidade de enerxía liberada no grande impacto e a subsecuente fusión do material na órbita da Terra puido haber derretido a capa superficial da Terra, formando un océano de magma.[19][20] A recentemente formada Lúa puido tamén haber tido o seu propio océano de magma lunar; as estimacións da súa profundidade varían entre 500 km e o raio enteiro da Lúa.

A súa órbita inicial era moito máis próxima que a actual e o día terrestre era moito máis curto xa que a Terra rotaba máis rápido. Durante centos de millóns de anos, a Lúa estivo afastándose lentamente da Terra, á vez que diminuíu a velocidade de rotación terrestre debido á transferencia de momento angular que se dá entre os dous astros. Este proceso de alonxamento continúa actualmente a razón de 38 mm por ano.

Malia a súa exactitude explicando moitos aspectos da evidencia, aínda hai algunhas dificultades que non son explicadas na súa totalidade pola hipótese do grande impacto, a maioría das cales teñen relación coa composición lunar.[21] En 2001, un equipo do Carnegie Institute de Washington (Estados Unidos) publicou a medida máis precisa ata o momento da composición isotópica de rochas lunares.[22] Para a súa sorpresa, o equipo de investigadores atopou que as rochas do Proxecto Apollo tiñan unha composición isotópica idéntica á das rochas terrestres e diferente de case todos os demais corpos do sistema solar. Como a maioría do material que foi parar á órbita terrestre para formar a Lúa críase que proviña de Tea, a observación dos científicos estadounidenses foi completamente inesperada. En 2007, investigadores do California Institute of Technology anunciaron que había menos dun 1% de probabilidade de que Teia e a Terra tivesen composicións isotópicas idénticas.[23] Finalmente, unha análise de 2012 dos isótopos do titanio en mostras lunares do Programa Apollo demostrou que a Lúa ten a mesma composición que a Terra,[24] o que entra en conflito coa hipótese do grande impacto respecto do que se esperaría se a Lúa se formase lonxe da órbita terrestre ou a partir de Teia e, xa que logo, cos resultados dos estudos citados anteriormente. Con todo, variacións na hipótese do grande impacto poderían explicar estes datos.

Características físicas editar

 
Estrutura e características da Lúa

A Lúa é excepcionalmente grande en comparación co seu planeta a Terra: un cuarto do diámetro do planeta e 1/81 da súa masa.[25] É o satélite máis grande do Sistema Solar en relación ao tamaño do seu planeta (aínda que Caronte é máis grande en relación ao planeta anano Plutón).[26] A superficie da Lúa é menos dunha décima parte da Terra, o que representa preto dun cuarto da área continental da Terra. Con todo, a Terra e a Lúa seguen sendo consideradas un sistema planeta-satélite, en lugar dun sistema dobre planetario, xa que o seu baricentro, está situado preto de 1700 km (aproximadamente un cuarto do raio da Terra) baixo a superficie da Terra.[27]

Estrutura interna editar

A Lúa é un corpo diferenciado: ten codia, manto e núcleo diferentes xeoquimicamente. A Lúa ten un núcleo interno sólido rico en ferro cun raio de 240 quilómetros e un núcleo externo composto principalmente de ferro líquido cun raio de aproximadamente 300 quilómetros. Ao redor do núcleo hai unha capa límite parcialmente fundida cun raio duns 500 quilómetros.[28] Crese que esta estrutura desenvolveuse a partir da cristalización fraccionada dun océano de magma global pouco logo da formación da Lúa, fai 4500 millóns de anos.[29] A cristalización deste océano de magma crearía un manto máfico a partir da precipitación e o afundimento dos minerais olivina, piroxena e ortopiroxena; despois de que preto de tres cuartas partes do océano de magma houbese cristalizado, os minerais plaxioclasio de menor densidade podíanse formar e flotar nunha costra na parte superior.[30] Os últimos líquidos en cristalizar estarían inicialmente comprendidos entre a codia e o manto, cunha grande abundancia de elementos incompatibles e elementos produtores de calor.[31] De acordo con iso, a cartografía xeoquímica desde a órbita mostra que a codia é maioritariamente anortosito,[32] e as mostras de rochas lunares dos ríos de lava que saíron á superficie provenientes da fusión parcial do manto confirman a composición máfica do manto, que é máis rico en ferro que o da Terra.[31] Técnicas xeofísicas indican que a codia ten un espesor medio duns 50 km.[31]

A Lúa é o segundo satélite máis denso do sistema solar logo de Ío.[33] Con todo, o núcleo interior da Lúa é pequeno, dun raio duns 350 km ou menos;[31] isto é só un 20% do tamaño da lúa, en contraste co aproximadamente 50% da maioría dos outros corpos terrestres. A súa composición non está ben delimitada, pero é probable que sexa de ferro metálico aliado cunha pequena cantidade de xofre e níquel; a análise da rotación variable no tempo da Lúa indican que está, como mínimo, parcialmente fundido.[34]

Xeoloxía da superficie editar

Artigos principais: Xeoloxia da Lúa e Rocha lunar.
 
Topografia da Lua.

A topografía da Lúa foi medida con altimetría láser e análise estereoscópica.[35] A característica topográfica máis visible da Lúa é a conca Polo Sur-Aitken da cara oculta, duns 2240 km de diámetro: o cráter máis grande da Lúa e o cráter máis grande coñecido do sistema solar.[36][37] Con 13 km de profundidade, o seu fondo é o punto máis baixo da superficie lunar.[36][38] As maiores elevacións da superficie da Lúa están localizadas inmediatamente no nordeste; suxeriuse que esta área puido ser formada polo impacto de forma oblicua a conca do Polo sur-Aitken.[39] Outras concas de grande impacto, tales como os mares Imbrium, Serenitatis, Crisium, Smythii e Orientale, tamén posúen elevacións e depresións localmente importantes.[36] A cara oculta da Lúa é de media 1,9 km máis alta que a cara visible.[31]

Características volcánicas editar

Artigo principal: Mar lunar.
 
Cara visible da Lúa cos nomes dos mares e cráteres

As chairas lunares escuras e relativamente monótonas que poden verse claramente a primeira ollada chámanse mares por que os astrónomos da antigüidade crían que estaban cheas de auga.[40] Hoxe en día sábese que son vastas piscinas solidificadas da antiga lava basáltica. Aínda que este material é similar ao basalto terrestre, o basalto lunar ten moita máis abundancia de ferro e carece completamente de minerais alterados pola auga.[41][42]

A maioría destas lavas afluíu ou foi proxectada cara ás depresións formadas polos cráteres de impacto xa que eran as zonas de menor altitude da topografía lunar. Varias provincias xeolóxicas conteñen volcáns en escudo e domos volcánicos que se atopan preto dos mares da cara visible da lúa.[43]

As zonas volcánicas poderían ter covas de tamaño 100 ou 1000 veces maior que as terrestres, especulándose que no futuro poderían dar acubillo a colonias no seu interior.[44]

 
Evidència do vulcanismo recente.

Os mares atópanse case exclusivamente na cara visible da Lúa; cobren un 31% desta cara, en contraposición ás poucas manchas diseminadas da cara non visible, que cobren tan só un 2%.[45] Pensase que isto pode ser causado por unha concentración de elementos produtores de calor baixo a codia na cara visible, tal como se ve nos mapas xeoquímicos obtidos polo espectrómetro de raios gamma do Lunar Prospector, elementos que causarían que o manto de abaixo se quentase, se fundise parcialmente e saíse á superficie en erupcións.[30][46][47] A maior parte dos basaltos presentes nos mares xurdiu durante as erupcións do período ímbrico, hai cerca de 3-3,5 mil millóns de anos, agora ben algunhas mostras datadas a través de radiometría datan de fai 4,2 mil millóns de anos[48] mentres que as erupcións máis recentes datan de fai só 1,2 mil millóns de anos.[49]

As rexións máis claras da superficie lunar son denominadas terrae ou montañas, xa que están máis elevadas que a maioría dos mares. Por datación radiométrica estableceuse que se formaron fai 4.400 millóns de anos, e poden representar os cúmulos de plaxioclasio do océano de magma lunar.[48][49] Ao contrario que a Terra, non se cre que se formaran importantes montañas lunares como resultado de eventos tectónicos.[50]

A concentración de mares na cara visíbel é probabelmente o reflexo dunha codia substancialmente máis espesa nas montañas da cara oculta, as cales puidéronse formar durante o impacto a pouca velocidade dunha segunda lúa terrestre varias decenas de millóns de anos logo da formación das propias lúas.[51][52]

Vista da dereita
Vista da esquerda
Catro vistas da Lúa. Da esquerda cara a dereita: o lado oculto, vista da dereita, lado visível e vista da esquerda. Observe que o lado virado cara a Terra presenta moitas máis rexións escuras (mares lunares) que a cara oculta.

Cráteres de impacto editar

 
Cráter lunar Daedalus da cara oculta da Luna

O outro principal proceso xeolóxico que afectou a superficie lunar foi a formación de cráteres de impacto, [53] a consecuencia da colisión de asteroides e cometas coa superficie lunar. Estímase que só na cara visíbel existan arredor de trescentos mil cráteres cun diámetro superior a 1 km.[54] Algúns destes teñen nomes en honor a investigadores, científicos, artistas e exploradores.[55] A cronoloxía da xeoloxía lunar baséase nas características xeolóxicas de impacto máis prominentes, incluíndo nectárico, Imbrico e Mare Orientale, estruturas caracterizadas por múltiples aneis de material revolto, normalmente con centenas e ata centos de miles de quilómetros de diámetro e asociadas cunha ampla plataforma de depósitos de exección que forman un horizonte estratigráfico rexional.[56] A ausencia de atmosfera, meteoroloxía e procesos xeolóxicos recentes fai que moitos destes cráteres se encontren perfectamente preservados. Aínda que só algunhas das concas con múltiples aneis foron datadas definitivamente, son, no entanto, usadas como referencia para atribuír datas relativas. Como os cráteres de impacto se acumulan a un ritmo relativamente constante, a conta do número de cráteres en determinada área pode ser usada para estimar a idade da superficie.[56] As idades radiométricas das rochas de impacto recollidas durante as misións Apollo datan de fai 3,8-4,1 mil millóns de anos. Isto foi usado para propor a existencia dun intenso bombardeo tardío de impactos.[57]

A codia da Lúa está cuberta por unha superficie ben esmiuzada e sometida a xardiñaría por impactos, que se coñece co nome de rególito, é formada a partir de procesos de impacto. A rególito máis fino -o chan lunar de cristal de dióxido de silicio - ten unha textura como a da neve e cheira como pólvora gastada.[58] O rególito das superficies máis antigas é, en xeral, máis espeso que o das superficies máis novas: variando no espesor entre os 10 a 20 m nos altiplanos e entre os 3 a 5 m nos mares.[59] Por baixo da capa de rególito atópase o megarególito, unha capa de rocha matriz bastante fracturada con varios quilómetros de espesor.[60]

Presenza de auga editar

 
Composición de imaxes do polo sur lunar obtida pola sonda Clementine.

Non se pode soster auga en estado líquido na superficie lunar. Cando é exposta á radiación solar, a auga descomponse rapidamente a mediante un proceso denominado fotólise, perdese cara ao espazo. Con todo, desde a década de 1960 formulouse a hipótese de que existen depósitos de auga en forma de xeo na Lua. O xeo tería orixe polos impactos de cometas ou posiblemente producido a través da reacción entre rochas lunares ricas en osíxeno e hidróxeno co vento solar, deixando vestixios de auga que poderían sobrevivir nos cráteres fríos e sen luz dos polos lunares.[61][62] As simulacións en computadora suxiren que ata 14.000 km² de superficie poden estar en sombra permanente.[63] A presenza de cantidades utilizables de auga na Lúa é importante para considerar a viabilidade económica dunha eventual colonización da Lúa, xa que o transporte de auga desde a Terra sería economicamente inviábel.[64]

Nos últimos anos, descubriron que hai vestixios de auga na superficie lunar.[65] En 1994, unha experiencia con radar biestático pola sonda Clementine , indicou a existencia de pequenas bolsas de auga conxelada preto da superficie. Con todo, observacións posteriores no radiotelescopio de Arecibo suxiren que estas bolsas pódense tratar, en realidade, de rochas proxectadas desde cráteres de impacto recentes.[66] En 1998, o espectómetro de neutróns a bordo da sonda Lunar Prospector , indicou que hai hidróxeno presente en elevada concentración no primeiro metro de profundidade do solo nas inmediacións das rexións polares.[67] En 2008, unha mostra de rocha volcánica traída á Terra polo Apollo 15 (1971) revelou que existían pequenas cantidades de auga no seu interior.[68]

No mesmo ano de 2008, a sonda Chandrayaan 1 confirmou a existencia de augas superficiais en forma de xeo a través do asignador de mineraloxía de a bordo. O espectrómetro observou liñas de absorción comúns co hidroxilo na luz solar reflectida, o que é evidencia de grandes cantidades de auga xeada na superficie lunar. A sonda mostrou que estas concentracións poden ser tan altas como 1000 ppm.[69] O 13 de novembro de 2009, a Axencia espacial dos Estados Unidos NASA anunciou o achado de auga na Lúa. Cando, o 9 de outubro a NASA estrelou a sonda LCROSS e o seu impulsor Centauro no fondo do cráter Cabeus no polo sur da Lúa, nunha operación que buscaba confirmar a presenza de auga no satélite natural da Terra. Na colisión levantouse unha columna de material desde o fondo do cráter que non recibira a luz do Sol en miles de millóns de anos.

"A auga que se levantou polo impacto da sonda podería encher unha ducia de baldes de oito litros", dixo o científico Anthony Colaprete. Os datos preliminares obtidos da análise deses materiais "indican que a misión descubriu, exitosamente, auga (...) e este descubrimento abre un novo capítulo no noso coñecemento da Lúa", afirmou a NASA.

"A concentración e distribución de auga e doutras substancias requiren máis análises, pero podemos dicir con seguridade que (o cráter) Cabeus contén auga", afirmou Colaprete.[70]

Distancia a Lúa editar

 
Comparación de tamaño aparente da Lúa entre o perixeo-apoxeo

En astronomía, unha distancia lunar (LD) é a medida da distancia desde a Terra á Lúa. A distancia media entre a Terra e a Lúa é 384 400 quilómetros (238 855 millas).[71] A distancia real varía ao longo da órbita da lúa.

Realízanse medicións de alta precisión da distancia á lúa medindo o tempo que tarda a luz en viaxar entre estacións LIDAR na Terra a retroreflectores colocados na Lúa.

A Lúa afástase da Terra a unha taxa media de 3,8 cm por ano, como se detectou nun experimento de medición lunar con láser .[72][73][74] A taxa da recesión considérase anormalmente alta.[75] Por coincidencia, a diagonal dos cubos dos retrorreflectores na Lúa tamén é de 3,8 cm.[76][77]

A primeira persoa que mediu a distancia á Lúa foi o astrónomo e xeógrafo Hiparco, século II a.C., utilizando trigonometría sinxela. Errando en aproximadamente 26 000 km da distancia real, un erro de aproximadamente 6,8%.

O catálogo de obxectos próximos da NASA inclúe as distancias á Terra de asteroides e cometas medidas en distancias lunares (LD).[78]

Revolucións da Lúa editar

A Lúa tarda en dar unha volta ao redor da Terra 27 d 7 h 43 min considerando o xiro respecto ao fondo estelar (revolución sideral), pero 29 d 12 h 44 min con respecto ao Sol (revolución sinódica). Isto débese a que neste lapso a Terra virou ao redor do Sol (ver mes). Esta última revolución rexe as fases da Lúa, eclipses e mareas lunisolares.

Como a Lúa tarda o mesmo tempo en dar unha volta sobre si mesma que en torno á Terra, presenta sempre a mesma cara. Este fenómeno é debido a que a Terra, por un efecto chamado gradiente gravitatorio, e relacionado coas mareas producidas pola Terra na Lúa, acoplou os movementos de xiro sobre o seu eixe e de xiro arredor da Terra. A maioría dos satélites regulares presentan este fenómeno respecto dos seus planetas. Así pois, ata a época da investigación espacial (Luna 3) non foi posible ver a cara lunar oculta, que presenta unha disimetría respecto da cara visible. O Sol ilumina sempre a metade da Lúa (exceptuando nas eclipses de lúa), que non ten por que coincidir coa cara visible, producindo as fases da Lúa. A inmobilización aparente da Lúa respecto da Terra produciuse porque a gravidade terrestre actúa sobre as irregularidades do globo lunar de forma que no transcurso do tempo a parte visible ten 4 km máis de raio que a parte non visible, estando o centro de gravidade lunar desprazado do centro lunar 1,8 km cara á Terra.

  • Revolución sinódica: é o intervalo de tempo necesario para que a Lúa volva ter unha posición análoga con respecto ao Sol e á Terra. A súa duración é de 29 d 12 h 44 min 2,78 s. Tamén se lle denomina lunación ou mes lunar.
  • Revolución sideral: é o intervalo de tempo que tarda á Lúa en volver a ter unha posición análoga con respecto ás estrelas. A súa duración é de 27 d 7 h 43 min 11,5 s.
  • Revolución trópica: é o lapso necesario para que a Lúa volva ter igual lonxitude celeste. A súa duración é de 27 d 7 h 43 min 4,7 s.
  • Revolución draconítica: é o tempo que tarda a Lúa en pasar dúas veces consecutivas polo nodo ascendente. A súa duración é de 27 d 5 h 5 min 36 s.
  • Revolución anomalística: é o intervalo de tempo que transcorre entre 2 pasos consecutivos da Lúa polo perixeo. A súa duración é de 27 d 13 h 18 min 33 s.

Movemento de translación lunar editar

O feito de que a Lúa saia aproximadamente unha hora máis tarde cada día explícase coñecendo a órbita da Lúa ao redor da Terra. A Lúa completa unha volta ao redor da Terra aproximadamente nuns 28 días. Se a Terra non rotase sobre o seu propio eixe, sería moi fácil detectar o movemento da Lúa na súa órbita. Este movemento fai que a Lúa avance ao redor de 12° no ceo cada día. Se a Terra non rotase, o que se vería sería a Lúa cruzando a bóveda celeste de oeste a leste durante dúas semanas, e logo estaría dúas semanas ausente (durante as cales a Lúa sería visible no lado oposto do Globo).

Con todo, a Terra completa un xiro cada día (a dirección de xiro é tamén cara ao leste). Así, cada día lévalle á Terra ao redor de 50 minutos máis para estar de fronte coa Lúa novamente (o cal significa que se pode ver a Lúa no ceo). O xiro da Terra e o movemento orbital da Lúa combínanse, de tal forma que a saída da Lúa atrásase da orde de 50 minutos cada día.

Tendo en conta que a Lúa tarda aproximadamente 28 días en completar a súa órbita ao redor da Terra, e esta tarda 24 horas en completar unha revolución ao redor do seu eixe, é sinxelo calcular o "atraso" diario da Lúa:

Mentres que en 24 horas a Terra realizaría unha revolución completa, a Lúa só percorrería un 1/28 da súa órbita ao redor da Terra, o cal expresado en graos de arco dá:

 

Se agora se calculase o tempo que a Terra na súa rotación tarda en percorrer este arco,

 

dá os aproximadamente 51 minutos que a Lúa atrasa a súa saída cada día.

Para notar o movemento da Lúa na súa órbita, hai que ter en conta a súa localización no momento da posta de Sol durante algúns días. O seu movemento orbital levaraa a un punto máis cara ao leste no ceo no crepúsculo cada día.

Movemento de rotación editar

 
Fases da lúa vistas desde o hemisferio norte (desde o hemisferio sur a súa orde é inverso)

A Lúa vira sobre un eixe de rotación que ten unha inclinación de 88,3° con respecto ao plano da elíptica de translación ao redor da Terra. Dado que a duración dos dous movementos é a mesma, a Lúa presenta á Terra constantemente o mesmo hemisferio. A Lúa tarda 27,32 días en dar unha volta sobre si mesma.

Translación da Lúa ao redor do Sol editar

Ao desprazarse en torno do Sol, a Terra arrastra ao seu satélite e a forma da traxectoria que esta describe é unha curva de tal natureza que dirixe sempre a súa concavidade cara ao Sol.

A velocidade con que a Lúa se despraza na súa órbita ao redor da Terra é de 1 km/s.

Libración editar

Artigo principal: Libración.
 
Libración: A animación mostra un conxunto de vistas simuladas da lúa ao longo dun mes

Debido á excentricidade da órbita lunar, a inclinación do eixe de rotación da Lúa con respecto ao plano da eclíptica e ao movemento de rotación da Terra no curso dunha revolución sideral, lógrase ver, desde a Terra, un 59% da superficie da Lúa -en vez do 50%-, coma se estivese animado de lixeiros abalos de leste a oeste e de norte a sur. Estes movementos aparentes coñécense co nome de libración.

Libración en lonxitude editar

Débese a que o movemento de rotación da Lúa é uniforme mentres que a súa velocidade angular non o é. É máxima no perixeo e mínima no apoxeo. Debido a esa Libración o satélite ten un abalo de oriente a poñente, grazas ao cal lógrase ver a superficie convexa correspondente á dun fuso de 7°.

Libración en latitude editar

 
Lúa menguante (vista desde o hemisferio norte).

É debido á inclinación do eixe de rotación da Lúa con respecto ao plano da súa órbita e á eclíptica. Devandito eixe forma un ángulo de 88°30′ co plano da eclíptica e como o da órbita lunar é de 5° con respecto á eclíptica, entón o ángulo formado co eixe de rotación da Lúa co plano da súa órbita é de 6°30′. Polo tanto, non só poden verse o polo norte e o polo sur da Lúa senón que se logra ver 6°30′ máis aló do polo sur. Esta libración é unha especie de cabeceo de norte a sur nun tempo que non é igual a unha revolución sideral, pois é de 27,2 días.

Libración diúrna editar

Débese ao feito de que o raio terrestre non é desprezable con respecto á distancia á Lúa. O valor desta libración é de case un grado, valor aproximado ao seu grao de paralaxe.

Sistema binario editar

A Lúa polo seu tamaño é o quinto satélite do Sistema Solar. Porén, tomando como criterio de comparación o cociente de masas co seu planeta resulta que Ganímedes é 1/12500 a masa de Xúpiter, Titán é 1/4700 a masa de Saturno e a Lúa é 1/81,3 a masa da Terra. Deste xeito poderíase considerar o sistema Terra-Lúa como un sistema binario.

Planeta dobre editar

 
Comparación a escala da Lúa e a Terra.

É a denominación que algúns científicos dan ao sistema Terra-Lúa debido ao desmesurado tamaño que presenta o satélite con relación ao planeta, de só 81 veces menor masa, é dicir só 3,6 veces menor que a Terra en diámetro (se o planeta fose do tamaño dunha pelota de baloncesto, a Lúa sería como unha pelota de tenis).

Esta afirmación apóiase nas relacións existentes entre os distintos planetas do Sistema Solar e os seus satélites, variando estas entre as 3,6/1 veces menor da Lúa e as 8924/1 do satélite XIII Leda con relación a Xúpiter.

Outras relacións son: V Miranda 105/1 con relación a Urano, II Deimos 566/1 con relación a Marte ó I Ío de 39/1 con relación a Xúpiter.

Tamén se apoia esta denominación na inexistencia de máis satélites naturais que orbiten á Terra, pois o habitual é que non exista ningún (caso de Mercurio ou Venus) ou que existan multitude deles como sucede nos planetas do tipo xoviano.

Así, cando se di que a Terra describe unha elipse en torno ao Sol, en realidade débese dicir que a órbita descríbea o centro do sistema Terra-Lúa. Ambos os astros, unidos por un eixe invisible, forman algo así como un haltere disimétrico que xira en torno ao seu centro de gravidade.

Debido a que a masa da Terra é moi superior á da Lúa, ese centro, denominado baricentro, que divide á masa común en dúas partes iguais, está situado no interior do globo terrestre, a uns 4683 km do seu centro. Así, 26 veces ao ano, a Lúa pasa alternativamente dun lado ao outro lado da órbita terrestre.

Desas consideracións, despréndese que os movementos da Lúa son moito máis complexos do que se supón, sendo necesario para determinar con exactitude os movementos reais da Lúa ter en conta nada menos que .475 irregularidades nos movementos lunares diferentes e que inclúen as perturbacións da súa órbita debidas á atracción exercida polos demais astros do sistema solar, especialmente Venus (o máis próximo) e Xúpiter (o de maior masa), así como entre outros a aceleración secular do movemento da Lúa.

Órbita da Lúa editar

Artigo principal: Órbita da Lúa.

A Lúa xira arredor da Terra, describindo unha traxectoria elíptica de baixa excentricidade, a unha distancia media de 384 400 quilómetros e nun sentido antihorario acompañándoa no seu xiro arredor do Sol. A súa órbita é elíptica, cun perixeo a 356 400 km e un apoxeo a 406 700 km, momento no que a lúa se ve máis pequena aínda estando chea (de calquera xeito, non deixa de ser unhas 25 000 veces máis brillante ca Sirio).

A distancia entre a Terra e o seu satélite natural varía, así como tamén a velocidade na órbita. Dado que a rotación lunar é uniforme e a súa traslación non, pois segue as leis de Kepler, prodúcese unha Libración en lonxitude que permite ver un pouco da superficie lunar ao leste e ao oeste, que de non ser así non se vería. O plano da órbita lunar está inclinado respecto da eclíptica uns 5° polo que se produce unha Libración en latitude que permite ver alternativamente un pouco máis aló do polo norte ou do sur. Por ambos os movementos o total de superficie lunar vista desde a Terra alcanza un 59% do total. Cada vez que a Lúa cruza a eclíptica, se a Terra e o Sol están sensiblemente aliñados (Lúa chea (Plenilunio) ou Lúa nova (Novilunio)) producirase unha eclipse lunar ou unha eclipse solar.

A órbita da Lúa é especialmente complexa. A razón é que a Lúa esta suficientemente lonxe da Terra e a forza de gravidade exercida polo Sol é significativa. Dada a complexidade do movemento, os nodos da Lúa, non están fixos, senón que dan unha volta en 18,6 anos. O eixe da elipse lunar non está fixo e o apoxeo e perixeo dan unha volta completa en 8,85 anos. A inclinación da órbita varía entre 5° e 5°18′. De feito, para calcular a posición da Lúa con exactitude fai falta ter en conta polo menos varios centos de termos. Ademais, a órbita Lúa-Terra atópase inclinada respecto do plano da órbita Terra-Sol, de modo que soamente en dous puntos da súa traxectoria, chamados nodos, poden producirse eclipses solares ou lunares.

Así mesmo, a Lúa afástase uns catro centímetros ao ano da Terra,[79] á vez que vai freando a rotación terrestre -o que fará que nun futuro afastado as eclipses totais de Sol deixen de producirse ao non ter a Lúa suficiente tamaño como para tapar o disco solar-. En teoría, dita separación debería prolongarse ata que a Lúa tardase 47 días en completar unha órbita ao redor do noso planeta, momento no cal o noso planeta tardaría 47 días en completar unha rotación ao redor do seu eixe, de modo similar ao que ocorre no sistema Plutón-Caronte. Con todo, a evolución futura do noso Sol pode trastornar esta evolución. É posible que ao converterse a nosa estrela nunha xigante vermella dentro de varios miles de millóns de anos, a proximidade da súa superficie ao sistema Terra-Lúa faga que a órbita lunar se vaia pechando ata que a Lúa estea a ao redor de 18 000 quilómetros da Terra -límite de Roche-, momento no cal a gravidade terrestre destruirá a Lúa converténdoa nuns aneis similares aos de Saturno. De todos os xeitos, o fin do sistema Terra-Lúa é incerto e depende da masa que perda o Sol neses estadios finais da súa evolución.[80]

 
Tempo requirido para que a luz viaxe desde a Terra ata a Lúa. O tamaño e a distancia están a escala.

Fases da Lúa editar

 
Fases da lúa.
Artigo principal: Fases da lúa.
  • Lúa crecente: fase da Lúa desde a lúa nova ata a lúa chea. Neste caso é máis empregado cuarto crecente ou o crecente (da lúa). Chámase así porque cada día vese máis superficie lunar.
  • Lúa chea: estado da Lúa en que se ve desde a Terra todo o disco desta (a cara visible). Plenilunio (culto).
  • Lúa minguante: fase da Lúa que vai desde a chea ata a nova. Coma no caso da lúa crecente, son máis empregadas as denominacións cuarto minguante ou o minguante, a minguante (da lúa). Devalo (culto).
  • Lúa nova: fase da Lúa na que esta é iluminada polo Sol na cara oposta á Terra, e polo tanto non se ve máis que a súa sombra. Novilunio (culto).
  • Lúa vella: é equivalente á Lúa chea.
 

As eclipses solares e lunares editar

 
Lúa baixa no ceo; a cor vermella é causado pola atmosfera terrestre. Nas eclipses de Lúa, esta toma unha cor parecida.

As eclipses débense a unha extraordinaria casualidade. O diámetro do Sol é 400 veces máis grande que o da Lúa, pero tamén está 400 veces máis lonxe, de modo que ambos abarcan aproximadamente o mesmo ángulo sólido para un observador situado na Terra.

A Lúa nunha eclipse lunar pode conter ata tres veces o seu diámetro dentro do cono de sombra causado pola Terra. Pola contra nunha eclipse solar a Lúa apenas tapa ao Sol (eclipse total) e en determinada parte da súa órbita, cando está máis distante, non chega a ocultalo completamente, deixando unha franxa anular (eclipse anular). A complexidade do movemento lunar dificulta o cálculo das eclipses e débese ter presente a periodicidade con que estas se producen (período Saros).

As mareas editar

Artigo principal: Marea.

En realidade, a Lúa non xira en torno á Terra, senón que a Terra e a Lúa xiran en torno ao centro de masas de ambos os dous. Non obstante, ao ser a Terra un corpo grande, a gravidade que sobre ela exerce a Lúa é distinta en cada punto.

No punto máis próximo é moito maior que no centro de masas da Terra, e maior neste que no punto máis afastado da Lúa.

Así, mentres a Terra xira en torno ao centro de gravidade do sistema Terra-Lúa, aparece á vez unha forza que intenta deformala, dándolle o aspecto dun ovo.

Este fenómeno chámase gradiente gravitatorio, o cal produce as mareas.

Ao ser a Terra sólida a deformación afecta máis ás augas e á atmosfera e é o que dá o efecto suban e baixen dúas veces ao día (sobe nos puntos máis próximo e máis afastado da Lúa).

 

Un efecto asociado é que as mareas frean á Terra na súa rotación (perde enerxía debido á fricción dos océanos co fondo do mar), e dado que o sistema Terra-Lúa ten que conservar o momento angular, a Lúa compénsao afastándose, actualmente, 38 milímetros cada ano, como demostraron as medicións láser da distancia, posíbeis grazas aos retro-reflectores que os astronautas deixaron na Lúa.

Auga na Lúa editar

Até o ano 2009 debateuse na comunidade científica a posíbel existencia de auga na Lúa. O ambiente selenita fai case imposible a presenza de auga: a non ser en forma cristalizada microscópica nas rochas, a existencia de auga líquida é practicamente imposíbel, xa que na maior parte da superficie lunar, por momentos a temperatura ascende moito.

Isto e a falta dunha atmosfera implican que toda auga exposta ao ambiente lunar típico se sublime e que as súas moléculas se fuxan ao espazo. Non obstante dous descubrimentos, un en 1996 por parte da sonda Clementine, e outro en 1998 debido ao Lunar Prospector detectaron imprevistas presenzas de hidróxeno nos polos lunares.[81] e outro en 1998 debido ao Lunar Prospector detectaron imprevistas presenzas de hidróxeno nos polos lunares.[82][83]

Unha hipótese para explicar tal fenómeno é que ese hidróxeno estea en forma de auga e que algúns cometas, ao impactar nas zonas polares, puidesen crear cráteres onde non chega a luz solar. En tales cráteres quizais puidera encontrarse auga conxelada de orixe cometaria (é dicir: auga exóxena). No interior dos cráteres polares nunca chega a luz solar, permanecen nunha eterna escuridade e xamais soben dos 240 °C. Nestes xélidos ocos hai auga conxelada ou un composto con hidróxeno como o metano (CH4). O 24 de setembro de 2009, a India reportou que a súa primeira nave de exploración lunar a Chandrayaan 1 empregando o Moon Mineralogy Mapper (Trazador Mineralóxico Lunar) da NASA, atopou evidencias dunha importante cantidade de auga endóxena (non procedente doutros astros) por debaixo da superficie da Lúa, tal auga sería en gran parte produto das reaccións químicas desencadeadas polas fortes radiacións que o mencionado satélite recibe, máis concretamente: o vento solar durante o día lunar faría que os ións de hidróxeno presentes nos materiais superficiais selenitas orixinen hidroxilo (OH) e auga ((H2O)), en canto ao posíbel xeo lunar algúns científicos suxiren que puidese haber até 300 millóns de toneladas nos cráteres polares que nunca reciben luz nin calor solar.[84][85][86][87]

Descubrimento de auga na Lúa editar

O 13 de novembro de 2009, a Axencia espacial dos Estados Unidos, NASA, anunciou o achado de auga na Lúa. Cando, o 9 de outubro a NASA estrelou a sonda LCROSS e o seu impulsor Centauro no fondo do cráter Cabeus no polo sur da Lúa, nunha operación que buscaba confirmar a presenza de auga no satélite natural da Terra. A colisión levantou unha columna de material dende o fondo dun cráter que non recibiu a luz do Sol en miles de millóns de anos.

A auga que se levantou polo impacto da sonda podería encher unha ducia de baldes de oito litros, dixo o científico Anthony Colaprete. Os datos preliminares obtidos da análise deses materiais "indican que a misión descubriu, exitosamente, auga (...) e este descubrimento abre un novo capítulo no noso coñecemento da Lúa", afirmou a NASA.

"A concentración e distribución de auga e doutras substancias requiren máis análise, pero podemos dicir con seguridade que (o cráter) Cabeus contén auga", afirmou Colaprete.

Atmosfera da Lúa editar

A Lúa ten unha atmosfera insignificante debido á súa baixa gravidade, incapaz de reter moléculas de gas na súa superficie. A totalidade da súa composición aínda descoñécese. O programa Apollo identificou átomos de helio e argon, e máis tarde (en 1988), observacións dende a Terra engadiron ións de sodio e potasio. A maior parte dos gases na súa superficie proveñen do seu interior.

A axitación térmica das moléculas de gas vén inducida pola radiación solar e polas colisións aleatorias entre as propias partículas atmosféricas. Na atmosfera terrestre as moléculas adoitan ter velocidades de centos de metros por segundo, pero excepcionalmente algunhas logran acadar velocidades de 2 000 a 3 000 m/s. Dado que a velocidade de escape é de, aproximadamente, 11 200 m/s estas nunca logran escapar ao espazo. Na Lúa, pola contra, ao ser a gravidade seis veces menor que no noso planeta, a velocidade de escape é así mesmo menor, da orde de 2 400 m/s. Podemos deducir entón que se a Lúa tivo antano unha atmosfera, as moléculas máis rápidas puideron escapar dela para, segundo unha lei da teoría cinética dos gases, inducir as restantes a aumentar a súa velocidade, acelerando así o proceso de perda atmosférica. Calcúlase que a desaparición completa da hipotética atmosfera lunar debeu realizarse ao longo de varios centenares de millóns de anos.

A practicamente ausencia de atmosfera no noso satélite obriga aos astronautas a dispoñer de equipos autónomos de subministración de gases, coñecidos como P.L.S.S. nos seus paseos pola superficie. Así mesmo, ao non existir un manto protector, as radiacións ultravioleta e os raios gamma emitidos polo Sol bombardean a superficie lunar, sendo necesario contar con traxes protectores especiais que eviten os seus efectos nocivos.

Para a tenue atmosfera lunar calquera pequeno cambio pode ser importante. A soa presenza dos astronautas altera localmente a súa presión e a súa composición ao enriquecela cos gases expirados por eles e polos que se escapan do módulo lunar cada vez que se efectúa unha EVA. Existe o temor de que os gases emitidos polas naves que na década do setenta aluaron na Lúa creasen unha polución ou contaminación de igual masa á da súa atmosfera nativa. Aínda que estes gases xa deberon desaparecer na súa maioría, aínda hai unha preocupación de que queden restos que impidan investigar sobre a atmosfera real da Lúa.

A atmosfera lunar recibe tamén achegas de partículas solares durante o día, que cesa ao chegar a noite. Durante a noite lunar, a presión pode baixar até non ser máis que de dous billonésimas partes da atmosfera terrestre, subindo durante o día até as oito billonésimas partes, demostrando así que a atmosfera lunar non é unha atmosfera permanente, senón unha concentración de partículas dependente do medio exolunar.

A ionosfera que rodea ao noso satélite diferénciase da terrestre no escaso número de partículas ionizadas, así como da presenza de electróns pouco enerxéticos que, arrancados do chan da Lúa, son emitidos ao espazo polo impacto dos raios solares. Actualmente, púidose determinar a existencia dunha cola de sodio composta por vapores que se desprenden do noso satélite de forma similar a como o fan os gases dos cometas.

A ausencia de ar, e en consecuencia de ventos, impide que se erosione a superficie e que transporte terra e area, alisando e cubrindo as súas irregularidades. Debido á ausencia de aire non se transmite o son. A falta de atmosfera tamén significa que a superficie da Lúa non teña ningunha protección con respecto ao bombardeo esporádico de cometas e asteroides. Ademais, unha vez que se producen os impactos destes, os cráteres que resultan practicamente non se degradan a través do tempo pola falta de erosión.

Relevo lunar editar

 
Ilustración de Galileo (1616) sobre as fases lunares.
Artigo principal: Xeoloxía da Lúa.

Cando Galileo Galilei apuntou o seu telescopio cara á Lúa en 1610 puido distinguir dúas rexións superficiais distintas. Ás rexións escuras denominounas «mares», os cales por suposto non teñen auga e levan nomes tales como Mar da Serenidade e Mar da Fecundidade; son planicies con poucos cráteres. O resto da superficie lunar é máis brillante, e representa rexións máis elevadas cunha alta densidade de cráteres, tales como Tycho e Clavius. Na superficie lunar tamén existen cadeas de montañas que levan nomes como Alpes e Apeninos, igual que na Terra. A nomenclatura coa que se coñece o relevo lunar foi introducida no 1651 polo astrónomo Giovanni Battista Riccioli, que asignou nomes en latín a diversas estruturas na superficie.[88]

Como curiosidade, cando a Lúa está moi próxima á fase de cuarto crecente, o xogo de luces e sombras na zona do terminador fan que se vexa unha X na Lúa.

Exploración lunar editar

 
O astronauta Buzz Aldrin na superficie da Lúa (1969).

A exploración da Lúa comezou o 1958 cando soviéticos e norteamericanos iniciaron, independentemente e en competición directa, proxectos para lanzar naves non tripuladas á órbita lunar. O principal programa da Unión Soviética foi o programa Luna (ou Lunik) que tiña por obxectivo chegar con naves non tripuladas á Lúa. A nave Luna 1 foi a primeira en sobrevoar a Lúa en 1959. O Luna 3 logrou fotografar a cara oculta do satélite o 4 de outubro de 1959.[89], o Luna 9 logrou pousarse suavemente sobre a súa superficie, o Luna 10 orbitou por primeira vez a Lúa, dous vehículos Lunokhod lograron pasearse pola súa superficie e a nave Luna 16 levou uns poucos gramos de po lunar á Terra.

Os Estados Unidos seguiron varios programas. O primeiro foi o programa Pioneer, logo veu o programa Ranger que estrelaba as súas naves contra a Lúa para lograr coas súas cámaras fotos detalladas da superficie. Só as Ranger 7, 8 e 9 lograron o seu obxectivo. Sucedeuno programa Surveyor que conseguiu o aterraxe suaves de naves non tripuladas. O programa Lunar Orbiter (1966-1967) puxo naves non tripuladas en órbita lunar para cartografar esta e axudar ao proxecto Apollo (1966-1972) a pór un home na Lúa fito histórico que se logrou, coa aluaxe do Apollo 11 o 20 de xullo de 1969, cando Neil Armstrong e Buzz Aldrin se converterón nos primeiros homes en camiñar pola superficie da Lúa e que se retransmitiu a todo o planeta desde as diferentes instalacións da Rede do Espazo Profundo. O MDSCC en Robledo de Chavela (Madrid, España) pertencente a ela, serviu de apoio durante toda a viaxe de ida e volta.[90][91]

Existen grupos que dubidan deste evento, alegando que a Lúa transmitida pola televisión foi un escenario montado, e todo o evento sería usado como propaganda do réxime estadounidense durante a guerra fría.

As naves estadounidenses Clementine e Lunar Prospector, as xaponesas Hiten e Selene, a europea Smart 1, a chinesa Chang'e 1 e a hindú Chandrayaan 1 representaron unha volta á Lúa, abandonada desde a última misión realizada pola nave soviética Luna 24 en 1976. A súa misión foi detectar a presenza de vapor de auga mesturado con po lunar e procedente de cometas que se estrelaron preto dos polos lunares en cráteres onde nunca son iluminados polo Sol.

En setembro de 2005, a NASA anunciou o proxecto dunha nova viaxe tripulada ao noso satélite, programado para o ano 2018.

En setembro de 2009, anunciouse que a sonda india Chandrayaan-1, que orbitaba a Lúa, detectou finas películas de auga na superficie, tras o impacto de LCROSS.[92][87]

A finais dos anos 2010 a Lúa volve estar no punto de mira das axencias espaciais.[93] A comezos de 2019 (3 de xaneiro) a sonda chinesa Chang'e 4 aluou na cara oculta, desenvolvendo un experimento de cultivo de plantas que aparentemente fracasou.[94]

A comezos de 2019, coa asistencia da NASA, faise o primeiro intento de aluaxe privada. O 21 de febreiro, dende Cabo Canaveiral, a bordo dunha lanzadeira Space X Falcon 9, é enviada á Lúa unha nave da israelí SpaceIL.[95]

Iconografía editar

 

Antigo Exipto
 

A Lúa, segundo Bonatti (1550)
 

Münchhausen
 

Viaxe a Lúa, segundo Méliès
 

Mesquita (Malaisia)
 

Croissant

As distintas formas que adopta a Lúa durante o seu ciclo de 28 días (especialmente a recoñocible silueta que lembra a unha letra "C" denominada crecente) teñen unha ampla presenza en diversas manifestacións, que abarcan desde a mitoloxía ata a arte, pasando pola heráldica ou a súa asociación simbólica co islam. Esta última vinculación (especialmente aos ollos dos non musulmáns) ten a súa orixe no século XVI, cando o crecente foi adoptado polos turcos como símbolo heráldico, e non adquiriría a súa actual connotación como símbolo relixioso ata moito tempo despois.[96] A súa presenza é habitual nas agullas das mesquitas, e forma parte da bandeira dalgúns países (xeralmente de tradición islámica).

En heráldica, o crecente pode adquirir distintas denominacións segundo estea orientado; a silueta formada por catro crecentes enlazados (que lembra a un trevo de catro follas) denomínase "lunel".[97]

A súa presenza na arte remóntase á época das pinturas rupestres (con exemplos en Tassili n'Ajjer, Alxeria)[98] e a súa aparición é omnipresente en todas as culturas da antigüidade, desde Exipto ata Roma. As artes plásticas (desde as ilustracións literarias ata o cinema), produciron numerosas imaxes máis ou menos antropomórficas da Lúa, algunhas delas convertidas en auténticas iconas da cultura do século XX (como as históricas imaxes da película de 1902 Viaxe á Lúa, obra dos irmáns Méliès).

Por último, como exemplo dos variados usos que se dan á silueta do crecente, cabe lembrar a relación da forma do croissant coa media lúa, circunstancia ligada co sitio de Viena polas tropas turcas en 1683.[99]

A Lúa no dereito internacional editar

Bandeiras que inclúen a imaxe da Lúa:
 

Alxeria
 

Comores
 

Acerbaixán
 

Brunei
 

Libia
 

Malaisia
 

Maldivas
 

Mauritania
 

Nepal
 

Paquistán
 

Singapur
 

Tunisia
 

Turkmenistán
 

Turquía
 

Uzbekistán
 

Crecente Vermello

As actividades que afectan de forma directa ao espazo exterior (no que se inclúe a Lúa) están reguladas por un tratado internacional asinado inicialmente en 1967 polos Estados Unidos, o Reino Unido e a Unión Soviética. En 2015, 103 países son parte do tratado, mentres que outros 89 asinaron o acordo pero aínda non o ratificaron.

Con todo, este feito non evitou que xurdisen algunhas iniciativas de lexitimidade legal máis que dubidosa, que periodicamente reclaman ante instancias oficiais a propiedade da Lúa, e que son reflectidas polos diarios polo seu rechamante carácter anecdótico:

Un novo aspecto a considerar deuse o 4 de marzo de 2022, ó caer sobre a Lúa o primeiro resto espacial de xeito non intencional.[92]

Influencia sobre os ritmos fisiolóxicos durante o sono editar

Confirmouse cientificamente, despois de moitos anos de especulacións ao respecto, que hai unha correlación entre as fases da lúa e os ritmos biolóxicos do ser humano durante o sono. Un grupo de científicos suízos observaron que, arredor da lúa chea, as ondas delta do electroencefalograma se reducían un 30 por cento durante o sono MOR, un indicador do sono profundo, que os participantes tardaron cinco minutos máis en conciliar o sono e, en xeral, que durmiron 20 minutos menos. Os participantes voluntarios sentiron que durmiron mal (calidade subxectiva do sono) durante a lúa chea, fase durante a cal se observaron neles niveis menores de melatonina, hormona que regula os ciclos de sono-vixilia. Trátase quizais dun ritmo circalunar que quedou como vestixio da antigüidade, "cando a lúa era responsábel da sincronización do comportamento humano". Considérase que esta é a primeira evidencia confiábel de que un ritmo lunar pode modular a estrutura do sono nos seres humanos cando se mide nas condicións altamente controladas dun protocolo de estudo de laboratorio circadiano sen a presenza das claves do tempo.[102][103][104]

A Lúa na literatura editar

Na literatura foron á lúa Luciano de Samosata, Astolfo en Orlando furioso de Ariosto, na obra de Dante, Cyrano de Bergerac, o Barón de Münchhausen, na obra de Jules Verne e Tintín.[105]

Frases formadas a partir de Lúa:

  • Estar ou vivir na lúa. Non se decatar do que acontece arredor dun.
  • Lúa de mel. Primeiros tempos despois do casamento (véxase hidromel).

Notas editar

  1. Véxase Outras lúas da Terra
  2. Existe un certo número de asteroides próximos á Terra, incluíndo 3753 Cruithne, que son coorbitais coa Terra: as súas órbitas fanos achegar á Terra durante un certo tempo pero entón cambian a longo prazo (Morais et al , 2002). Estes son case-satélites: non son lúas, xa que non orbitan a terra.
  3. Morais, M.H.M.; Morbidelli, A. (2002). Icarus, ed. "The Population of Near-Earth Asteroids in Coorbital Motion with the Earth" (en inglés) 160 (1): 1–9. Bibcode:2002Icar..160....1M. doi:10.1006/icar.2002.6937. 
  4. 4,0 4,1 4,2 "Did you know?". indd.adobe.com. Consultado o 2022-07-04. 
  5. Co 27% do diámetro e o 60% da densidad da Terra, a Lúa ten o 1,23% da masa terrestre. A lúa Caronte é maior que o seu primario Plutón, pero Plutón considérase un planeta anano.
  6. Dove, Adrienne; Robbins, Stuart; Wallace, Colin (setembro 2005). "The Lunar Orbit Throughout Time and Space" (PDF). Arquivado dende o orixinal (PDF) o 27 de marzo de 2014. Consultado o 06 de setembro de 2014. 
  7. UNOOSA (01-01-2008). "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, includingthe Moon and Other Celestial Bodies" (en inglés). Consultado o 27/12/2014. 
  8. Ernout, A. y Meillet, A. (1951). Klincksieck, ed. Dictionnaire etymologique de la langue latine (3.ª ed. ed.). París. 
  9. Kleine, T.; Palme, H.; Mezger, K.; Halliday, A.N. (2005). "Hf–W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science (en inglés) 310 (5754): 1671–1674. PMID 16308422. doi:10.1126/science.1118842. 
  10. Binder, A.B. (1974). "On the origin of the Moon by rotational fission". The Moon (en inglés) 11 (2): 53–76. doi:10.1007/BF01877794. 
  11. 11,0 11,1 11,2 Stroud, Rick (2009). Walken and Company, ed. The Book of the Moon. pp. 24–27. ISBN 0802717349. 
  12. Mitler, H.E. (1975). "Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin". Icarus 24: 256–268. doi:10.1016/0019-1035(75)90102-5. 
  13. Stevenson, D.J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences 15: 271–315. doi:10.1146/annurev.ea.15.050187.001415. 
  14. Taylor, G. Jeffrey (31 de diciembre de 1998). Planetary Science Research Discoveries, ed. "Origin of the Earth and Moon" (en inglés). Consultado o 7 de abril de 2010. 
  15. Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature (en inglés) 412 (6848): 708–712. PMID 11507633. doi:10.1038/35089010. 
  16. Pahlevan, Kaveh; Stevenson, David J. (2007). "Equilibration in the aftermath of the lunar-forming giant impact". Earth and Planetary Science Letters (en inglés) 262 (3–4): 438–449. doi:10.1016/j.epsl.2007.07.055. 
  17. Nield, Ted (2009). "Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France)". Geoscientist (en inglés) 19: 8. Arquivado dende o orixinal o 27 de setembro de 2012. Consultado o 27 de outubro de 2013. 
  18. El vulcanismo lunar duró más tiempo del esperado
  19. Warren, P. H. (1985). "The magma ocean concept and lunar evolution". Annual review of earth and planetary sciences. (en inglés) 13: 201–240. doi:10.1146/annurev.ea.13.050185.001221. 
  20. Tonks, W. Brian; Melosh, H. Jay (1993). "Magma ocean formation due to giant impacts". Journal of Geophysical Research (en inglés) 98 (E3): 5319–5333. doi:10.1029/92JE02726. 
  21. Daniel Clery (11 outubro de 2013). "Impact Theory Gets Whacked". Science (en inglés) 342: 183. doi:10.1126/science.342.6155.183. 
  22. Wiechert, U.; et al. (outubro 2001). Science, ed. "Oxygen Isotopes and the Moon-Forming Giant Impact". Science (en inglés) 294 (12): 345–348. Bibcode:2001Sci...294..345W. PMID 11598294. doi:10.1126/science.1063037. 
  23. Pahlevan, Kaveh; Stevenson, David (outubro 2007). "Equilibration in the Aftermath of the Lunar-forming Giant Impact". EPSL (en inglés) 262 (3–4): 438–449. Bibcode:2007E&PSL.262..438P. arXiv:1012.5323. doi:10.1016/j.epsl.2007.07.055. 
  24. Astrobio.net (ed.). "Titanium Paternity Test Says Earth is the Moon's Only Parent (University of Chicago)" (en inglés). Consultado o 28/12/2014. 
  25. Spudis, P.D. (2004). World Book Online Reference Center, NASA, ed. "Moon" (en inglés). Arquivado dende o orixinal o 17 de abril de 2007. Consultado o 12 de abril de 2007. 
  26. The Planetary Society (ed.). "Space Topics: Pluto and Charon" (en inglés). Arquivado dende o orixinal o 18 de febreiro de 2012. Consultado o 6 de abril de 2010. 
  27. International Astronomical Union, ed. (2006). "Planet Definition Questions & Answers Sheet" (en inglés). Arquivado dende o orixinal o 15 de marzo de 2012. Consultado o 24 de marzo de 2010. 
  28. NASA, ed. (01.06.11). "NASA Research Team Reveals Moon Has Earth-Like Core" (en inglés). Arquivado dende o orixinal o 11 de xaneiro de 2012. Consultado o 29 de decembro de 2014. 
  29. Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience (en inglés) 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. 
  30. 30,0 30,1 Shearer, C.; et al. (2006). "Thermal and magmatic evolution of the Moon". Reviews in Mineralogy and Geochemistry (en inglés) 60 (1): 365–518. doi:10.2138/rmg.2006.60.4. 
  31. 31,0 31,1 31,2 31,3 31,4 Wieczorek, M. (2006). "The constitution and structure of the lunar interior". Reviews in Mineralogy and Geochemistry 60 (1). pp. 221–364. doi:10.2138/rmg.2006.60.3. 
  32. Lucey, P.; Korotev, Randy L. (2006). "Understanding the lunar surface and space-Moon interactions". Reviews in Mineralogy and Geochemistry 60 (1). pp. 83–219. doi:10.2138/rmg.2006.60.2. 
  33. Schubert, J. (2004). "Interior composition, structure, and dynamics of the Galilean satellites.". En F. Bagenal; et al. Jupiter: The Planet, Satellites, and Magnetosphere (en inglés). Cambridge University Press. pp. 281–306. ISBN 978-0-521-81808-7. 
  34. Williams, J.G.; Turyshev, S.G.; Boggs, D.H.; Ratcliff, J.T. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research (en inglés) 37 (1): 6771. Bibcode:2006AdSpR..37...67W. arXiv:gr-qc/0412049. doi:10.1016/j.asr.2005.05.013. 
  35. Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B. (xaneiro 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets (en inglés): 69. Bibcode:1998nvmi.conf...69S. 
  36. 36,0 36,1 36,2 Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J. (1994). "Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry". Science (en inglés) 266 (5192): 1848–1851. Bibcode:1994Sci...266.1848S. PMID 17737079. doi:10.1126/science.266.5192.1848. 
  37. Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. (1997). Geophysical Research Letters, ed. "Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle" (en inglés) 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. 
  38. Taylor, G.J. (17 xullo 1998). Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology, ed. "The Biggest Hole in the Solar System" (en inglés). Consultado o 31/12/2014. 
  39. Schultz, P. H. (marzo 1997). Conference Paper, 28th Annual Lunar and Planetary Science Conference, ed. "Forming the south-pole Aitken basin – The extreme games" (en inglés) 28: 1259. Bibcode:1997LPI....28.1259S. 
  40. Wlasuk, Peter (2000). Observing the Moon (en inglés). Springer. p. 19. ISBN 978-1-85233-193-1. Consultado o 31/12/2014. 
  41. Norman, M. (21 abril 2004). "The Oldest Moon Rocks" (en inglés). Planetary Science Research Discoveries. 
  42. Varricchio, L. (2006). Xlibris Books, ed. Inconstant Moon (en inglés). ISBN 978-1-59926-393-9. 
  43. Head, L.W.J.W. (2003). "Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement" (en inglés) 108 (E2). Journal of Geophysical Research: 5012. Bibcode:2003JGRE..108.5012W. doi:10.1029/2002JE001909. Arquivado dende o orixinal o 12/03/2007. Consultado o 1/01/2015. 
  44. "Take refuge in a cave – on the Moon". Caves & pangaea blog. 2020-08-20. Consultado o 2020-08-22. 
  45. Gillis, J.J.; Spudis, P.D. (1996). Lunar and Planetary Science, ed. "The Composition and Geologic Setting of Lunar Far Side Maria" (en inglés) 27: 413–404. Bibcode:1996LPI....27..413G. 
  46. Lawrence; D. J.; et al. (11 agosto de 1998). HighWire Press, ed. "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science (en inglés) 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. ISSN 1095-9203. PMID 9727970. doi:10.1126/science.281.5382.1484. Consultado o 1/01/2015. 
  47. Taylor, G.J. (31 agosto de 2000). Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology, ed. "A New Moon for the Twenty-First Century" (en inglés). 
  48. 48,0 48,1 Papike, J.; Ryder, G.; Shearer, C. (1998). Reviews in Mineralogy and Geochemistry, ed. "Lunar Samples" (en inglés) 36: 5.1–5.234. 
  49. 49,0 49,1 Hiesinger, H.; Head, J.W.; Wolf, U.; Jaumanm, R.; Neukum, G. (2003). J. Geophys. Res., ed. "Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum" (en inglés) 108 (E7): 1029. Bibcode:2003JGRE..108.5065H. doi:10.1029/2002JE001985. 
  50. Munsell, K. (4 decembro de 2006). "Majestic Mountains". Solar System Exploration (en inglés). NASA. Arquivado dende o orixinal o 17/09/2008. Consultado o 3/01/2015. 
  51. Richard Lovett. Nature.com, ed. "Early Earth may have had two moons : Nature News" (en inglés). Consultado o 2/01/2015. 
  52. Theconversation.edu.au (ed.). "Was our two-faced moon in a small collision?" (en inglés). Consultado o 2/01/2015. 
  53. Melosh, H. J. (1989). Impact cratering: A geologic process (en inglés). Oxford Univ. Press. ISBN 978-0-19-504284-9. 
  54. European Space Agency, ed. (2010). "Moon Facts". SMART-1. Consultado o 4/01/2015. 
  55. "Gazetteer of Planetary Nomenclature: Categories for Naming Features on Planets and Satellites" (en inglés). U.S. Geological Survey. Consultado o 4/01/2015. 
  56. 56,0 56,1 Don, Wilhelms (1987). "Relative Ages". Geologic History of the Moon (PDF). U.S. Geological Survey. Consultado o 4/01/2015. 
  57. Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas (2007). Icarus, ed. "Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history" 186 (1): 11–23. Bibcode:2007Icar..186...11H. doi:10.1016/j.icarus.2006.09.009. 
  58. NASA, ed. (30 de xaneiro de 2006). "The Smell of Moondust" (en inglés). Arquivado dende o orixinal o 08 de marzo de 2010. Consultado o 15 de marzo de 2010. 
  59. Heiken, G.; Vaniman, D.; French, B. (eds.) (1991). Cambridge University Press, ed. Lunar Sourcebook, a user's guide to the Moon. Nova York. pp. 736. ISBN 978-0-521-33444-0. 
  60. Rasmussen, K.L.; Warren, P.H. (1985). "Megaregolith thickness, heat flow, and the bulk composition of the Moon". Nature (en inglés) 313 (5998): 121–124. Bibcode:1985Natur.313..121R. doi:10.1038/313121a0. 
  61. Margot, J. L.; Campbell, D. B.; Jurgens, R. F.; Slade, M. A. (4 de xuño de 1999). "Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations". Science 284 (5420): 1658–1660. Bibcode:1999Sci...284.1658M. PMID 10356393. doi:10.1126/science.284.5420.1658. 
  62. William R., Ward (1 de agosto de 1975). "Past Orientation of the Lunar Spin Axis". Science 189 (4200): 377–379. Bibcode:1975Sci...189..377W. PMID 17840827. doi:10.1126/science.189.4200.377. 
  63. Martel, L. M. V. (4 xuño 2003). Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology, ed. "The Moon's Dark, Icy Poles" (en anglès). Consultado o 10/01/2015. 
  64. Seedhouse, Erik (2009). Springer Praxis, ed. Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon. Springer-Praxis Books in Space Exploration (en inglés). Alemaña. p. 136. ISBN 978-0-387-09746-6. 
  65. Coulter, Dauna (18 marzo 2010). Science@NASA, ed. "The Multiplying Mystery of Moonwater". Arquivado dende o orixinal o 16/05/2016. Consultado o 10/01/2015. 
  66. Spudis, P. (6 novembro 2006). The Space Review, ed. "Ice on the Moon". Consultado o 16/01/2015. 
  67. Feldman, W. C.; S. Maurice, A. B. Binder, B. L. Barraclough, R. C. Elphic, D. J. Lawrence (1998). "Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles". Science 281 (5382): 1496–1500. Bibcode:1998Sci...281.1496F. PMID 9727973. doi:10.1126/science.281.5382.1496. 
  68. Saal, Alberto E.; Hauri, Erik H.; Cascio, Mauro L.; van Orman, James A.; Rutherford, Malcolm C.; Cooper, Reid F. (2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature 454 (7201): 192–195. Bibcode:2008Natur.454..192S. PMID 18615079. doi:10.1038/nature07047. 
  69. Pieters, C. M.; Goswami, J. N.; Clark, R. N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M. D.; Green, R.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L. A.; Tompkins, S.; Varanasi, P. (2009). "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1". Science 326 (5952): 568–72. Bibcode:2009Sci...326..568P. PMID 19779151. doi:10.1126/science.1178658. 
  70. Science. El mundo, ed. "La NASA detecta agua en la superficie de la Luna" (en castelán). Consultado o 22/03/2015. 
  71. NASA Staff (10 de maio de 2011). NASA, ed. ""Solar System Exploration - Earth's Moon: Facts & Figures" (en inglés). Arquivado dende o orixinal o 10 de febreiro de 2014. Consultado o 6 de novembro de 2011. 
  72. "Is the Moon moving away from the Earth? When was this discovered?" (en inglés). Consultado o 27/10/2013. 
  73. C.D. Murray & S.F. Dermott (1999). Cambridge University Press, ed. Solar System Dynamics. p. 184. 
  74. Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. pp. 79–81. ISBN 0-921820-71-2. 
  75. Bills, B.G., and Ray, R.D. (1999). "Lunar Orbital Evolution: A Synthesis of Recent Results". Geophysical Research Letters 26 (19): 3045–3048. doi:10.1029/1999GL008348. Arquivado dende o orixinal o 22 de xaneiro de 2012. Consultado o 27 de outubro de 2013. 
  76. MEASURING THE MOON'S DISTANCE
  77. Lunar Retroreflectors
  78. "NEO Earth Close Approaches". Arquivado dende o orixinal o 07 de marzo de 2014. Consultado o 27 de outubro de 2013. 
  79. RTVE. "Telescopios". Tres14 (en castelán). Consultado o 27/10/2013. 
  80. "Earth's Moon Destined to Disintegrate" (en inglés). Consultado o 27/10/2013. 
  81. Xeo na Lúa (texto en inglés, informe de la NASA)
  82. "Eureka! Achado xeo nos polos da Lúa (texto en inglés informe da NASA)|24-04-2006". Arquivado dende o orixinal o 06-08-2013. Consultado o 23-08-2015. 
  83. Glosario Selenográfico. José Carlos Violat Bordonau. España, 2006.
  84. ELPAÍS.com. "Hallan signos de agua en la Luna". 
  85. Times Online. "India’s lunar mission finds evidence of water on the Moon". Consultado o 2009. 
  86. http://science.nasa.gov/headlines/y2009/24sep_moonwater.htm Arquivado 27 de setembro de 2009 en Wayback Machine. Water Molecules Found on the Moon Nasa
  87. 87,0 87,1 Detectan solo "húmido" na lua
  88. "Mapping the Moon". indd.adobe.com. Consultado o 2022-07-04. 
  89. astronautix.com. Encyclopedia Astronautica, ed. "Luna Chronology: Luna E-3". Consultado o 5/11/2013. 
  90. «La Revista: El hombre que pisó la Luna: Cuatro españoles en el Apolo XI», artigo en El Mundo, 31 de xaneiro de 2000 (en castelán)
  91. «Sen as vitais comunicacións mantidas entre o Apolo XI e a estación madrileña de Robledo de Chavela, a nosa aterraxe na lúa non sería posible», afirmou Neil Armstrong. Andrés Campos,«Excursiones: Ascensión a la Almenara: "La primera piedra"», artigo en El País, 24 de febreiro de 1995 (en castelán).
  92. 92,0 92,1 "Incoming! Debris enroute to the Moon". www.esa.int (en inglés). Consultado o 2022-03-08. 
  93. esa. "La Antártida, en el punto de mira". European Space Agency (en castelán). Consultado o 2019-01-21. 
  94. digital, Vida. "La sonda china, la cara oculta de la luna y los brotes que solo vivieron dos días en el espacio". eldiario.es (en castelán). Consultado o 2019-01-21. 
  95. Shekhtman, Svetlana (2019-02-21). "NASA is Aboard First Private Moon Landing Attempt". NASA. Consultado o 2019-02-22. 
  96. Hugh Honour, John Fleming (1987). Historia del arte. Reverte. pp. 251 de 650. ISBN 9788429114416. 
  97. García, Xavier (14 de novembro de 2011). "Dibujo Heráldico". Consultado o 1 de abril de 2018. 
  98. Unesco (1982). "Tassili n'Ajjer". Consultado o 5 de setembro de 2009. 
  99. Ver en diccionario alemán de Jacob Grimm y Wilhelm Grimm, (Deutsches Wörterbuch von Jacob Grimm und Wilhelm Grimm) [1] Arquivado 03 de marzo de 2016 en Wayback Machine.
  100. "Anecdotario lunar de la delegación chilena del IIEE.". Arquivado dende o orixinal o 01 de xaneiro de 2008. Consultado o 01 de xaneiro de 2008. 
  101. EL MUNDO - Suplemento crónica 565 - EL HOMBRE QUE VENDE LA LUNA
  102. Cajochen, Ch., Altanay-Ekici, S., Münch, M., Frey, S., Knoblauch, V., y Wirz-Justice, A. (25 de xullo do 2013). Current Biology, ed. "Evidence that the human cycle influences human sleep" (en inglés): 1485–1488. Consultado o 21 de agosto de 2013. 
  103. Nota xornalística na páxina web Psiquiatria.com Sección Noticias/Enfermedades mentales/Trastornos del sueño/Etiología "Los ciclos lunares afectan al sueño". Consultado o 21 de agosto de 2013
  104. Resumo e gráficas do artigo orixinal (en inglés)
  105. Murado, Miguel-Anxo (21 de xullo de 2019). "Breve historia de la Luna". La Voz de Galicia (en castelán). Consultado o 1 de agosto de 2019. 

Véxase tamén editar

Outros artigos editar