Fotosíntese

conversión de materia inorgánica en materia orgánica

A fotosíntese (do grego φώτο foto, 'luz' e σύνθεσις synthesis, 'composición') é o proceso no que as plantas, cianobacterias e outras bacterias e algas macroscópicas, todas elas seres autótrofos, transforman enerxía luminosa en enerxía química procesando o dióxido de carbono (CO2), auga (H2O) e minerais en compostos orgánicos e osíxeno gasoso (O2)[1].

Esquema da fotosíntese nas plantas. Os carbohidratos producidos almacénanse ou son usados pola planta.
Ecuación global para a clase de fotosíntese que ocorre nas plantas.
Imaxe que amosa a distribución global da fotosíntese, incluíndo tanto a vexetación oceánica (coma o fitoplancto) coma a terrestre.

A través do proceso aqueles producen o seu propio alimento, constituído esencialmente por azucres, como a glicosa (C6H12O6), de onde obteñen enerxía e carbono, aínda que tamén necesitan elementos químicos procedentes de sales minerais absorbidos polas raíces. Coa fotosíntese iníciase toda a cadea trófica. Sen esta, os animais e os outros seres heterotróficos serían incapaces de sobrevivir, pois a base da súa alimentación estará sempre nas substancias orgánicas proporcionadas polas plantas verdes.

A relación da cor verde das plantas coa luzEditar

Xa na antigüidade Aristóteles observara e describira que as plantas necesitaban luz solar para adquirir a cor verde. Mais foi en 1771 cando o estudo do proceso fotosintético comezou a observarse por Joseph Priestley. O químico inglés, confinando unha planta nunha redoma de cristal comprobou a produción dunha substancia que permitía a combustión, e que, en certos casos avivaba a chama dun carbón en brasa. No futuro acabouse descubrindo que a dita substancia era un gas, o osíxeno.

A descuberta da utilización do carbono do arEditar

Na segunda metade do século XVIII, Jan Ingenhousz, físico-químico holandés, sustentou que o dióxido de carbono do ar era utilizado polas plantas como nutriente. A comprobación deuse deseguida por diversos químicos daquel século que repetiron as experiencias do científico holandés.

A incorporación da auga polas plantasEditar

Nicolas-Théodore de Saussure, xa no inicio do século XIX, descubriu que os vexetais incorporaban auga aos seus tecidos.

A descuberta da retirada de nutrientes do soloEditar

Unha observación importante foi que o nitróxeno, así como diversos sales e minerais, eran retirados do solo polas plantas. E que a enerxía proveniente do Sol se transformaba en enerxía química, ficando almacenada nunha serie de produtos en virtude dun proceso que entón acabou sendo chamado de fotosíntese.

A substancia chamada clorofila illouse na segunda década do século XIX. Tamén naquel século se descubriu que a clorofila é a responsábel da cor verde das plantas, alén de desempeñar un papel importante na síntese da materia orgánica. Julius von Sachs demostrou que a clorofila se localizaba nos chamados orgánulos celulares, que despois, a través de estudos máis precisos, chamáronse de cloroplastos.

A reprodución do ciclo da clorofila en laboratorioEditar

Ao avanzaren as técnicas bioquímicas, en 1954 foi posíbel o illamento e extracción daqueles orgánulos intactos. Foi Daniel Israel Arnon, quen obtivo cloroplastos a partir das células da espinaca conseguindo reproducir en laboratorio as reccións completas da fotosíntese.

Fases da fotosínteseEditar

 
Reaccións que teñen lugar durante a fase luminosa na membrana dos tilacoides.
 
Melvin Calvin descubridor do ciclo que leva o seu nome.

Con estas técnicas se descubriu, por exemplo, que a fotosíntese ocorre en dúas etapas ou fases.

Fase luminosa ou fotoquímicaEditar

Artigo principal: Fase luminosa.

A enerxía lumínica que absorbe a clorofila excita os electróns externos da molécula, os cales poden pasar a outra molécula adxacente (separación de cargas) e producen unha especie de corrente eléctrica (transporte de electróns) no interior do cloroplasto a través da cadea de transporte de electróns. A enerxía (procedente da luz) dos electróns que se transportan emprégase indirectamente nas sínteses de ATP mediante a fotofosforilación (precisa transporte de protóns desde o lumen tilacoidal ao estroma), e directamente na síntese de NADPH (o NADP recibe os electróns procedentes da auga, ao final da cadea de transporte e redúcese a NADPH). Ambos os copostos son necesarios para a seguinte fase ou ciclo de Calvin, onde se sintetizarán os primeiros azucres que servirán para a produción de sacarosa e amidón. Os electróns que ceden as clorofilas repóñense mediante a oxidación do H2O, proceso en que se xera o O2 que as plantas liberan á atmosfera.

Existen dúas variantes de fotofosforilación: acíclica e cíclica, segundo o tránsito que siguen os electróns a través dos fotosistemas. As consecuencias de seguir un tipo ou outro estriban principalmente na produción ou non de NADPH e na liberación ou non de O2.

Fotofosforilación acíclica (osixénica)

O proceso da fase luminosa, suposto para dous electróns é o seguinte:

Os fotóns inciden sobre o fotosistema II, excitando e liberando dous electróns, que pasan ao primeiro aceptor de electróns, a feofitina. Os electróns reponos o dador último de electróns, o dador Z, cos electróns procedentes da fotólise da auga no interior do tilacoide (a molécula de auga divídese en 2H+ + 2e- + 1/2O2). Os protóns da fotólise acumúlanse no interior do tilacoide, e o osíxeno é liberado.

Os electróns pasan a unha cadea de transporte de electróns, que inverterá a súa enerxía liberada na síntese de ATP. A teoría quimioosmótica explícao da seguinte maneira: os electróns cédense ás plastoquinonas, que captan tamén dous protóns do estroma. Os electróns e os protóns pasan ao complexo de citocromos bf, que bombea os protóns ao interior do tilacoide. Conséguese así unha gran concentración de protóns no tilacoide (entre estes e os resultantes da fotólise da auga), que se compensa regresando ao estroma a través das proteínas ATP-sintasas, que invisten a enerxía do paso dos protóns en sintetizar ATP. A síntese de ATP na fase fotoquímica denomínase fotofosforilación.

Os electróns dos citocromos pasan á plastocianina, que os cede á súa vez ao fotosistema I. Coa enerxía da luz, os electróns son liberados de novo e captados polo aceptor A0. De aí pasan a través dunha serie de filoquinonas ata chegar á ferredoxina. Esta molécula cédeos ao enzima NADP+-redutasa, que capta tamén dous protóns do estroma. Cos dous protóns e os dous electróns redúcese un NADP+ en NADPH + H+.

O balance final é que por cada molécula de auga (e por cada catro fotóns) fórmanse media molécula de osíxeno, 1,3 moléculas de ATP, e un NADPH + H+.

Fase luminosa cíclica (Fotofosforilación anosixénica)

Na fase luminosa ou fotoquímica cíclica intervén de xeito exclusivo o fotosistema I, xerándose un fluxo ou ciclo de electróns que en cada volta dá lugar a sínteses de ATP. Ao non intervir o fotosistema II, non hai fotólise da auga e polo tanto non se produce a redución do NADP+ nin se desprende osíxeno (anosixénica). Obtense unicamente ATP.

O obxectivo da fase cíclica tratada é amañar o déficit de ATP obtido na fase acíclica para poder afrontar a fase escura posterior.

Cando se ilumina con luz de lonxitude de onda superior a 680 nm só se produce o proceso cíclico. Ao incidir os fotóns sobre o fotosistema I, a clorofila P700 libera os electróns que chegan á ferredoxina, que os cede a un citocromo bf e este á plastoquinona (PQ), que capta dous protóns e pasa a (PQH2). A plastoquinona reducida cede os dous electróns ao citocromo bf, seguidamente á plastocianina e de volta ao fotosistema I. Este fluxo de electróns produce unha diferenza de potencial no tilacoide que fai que entren protóns ao interior. Posteriormente sairán ao estroma pola ATP-sintasa fosforilando ADP en ATP, de xeito que unicamtne se producirá ATP nesta fase.

Serve para compensar o feito de que na fotofosforilación acíclica non se xera suficiente ATP para a fase escura.

A fase luminosa cíclica pode producirse ao mesmo tempo que a acíclica.

Fase escura ou sintéticaEditar

Na fase escura, que ten lugar na matriz ou estroma dos cloroplastos, tanto a enerxía en forma de ATP como o NADPH que se obtivo na fase fotoquímica se usa para sintetizar materia orgánica por medio de substancias inorgánicas. A fonte de carbono empregada é o dióxido de carbono, mentres que como fonte de nitróxeno se utilizan os nitratos e nitritos e como fonte de xofre, os sulfatos. Esta fase denomínase escura non porque ocorra de noite, senón porque non require enerxía solar para poder concretarse.

Síntese de compostos de carbono

Foi descuberta polo bioquímico estadounidense Melvin Calvin, polo que tamén se coñece como ciclo de Calvin. Prodúcese mediante un proceso de carácter cíclico en que se poden distinguir varias fases.

En primeiro lugar prodúcese a fixación do dióxido de carbono. No estroma do cloroplasto, o dióxido de carbono atmosférico únese á pentosa ribulosa-1,5-bifosfato, grazas ao enzima RuBisCO, e orixina un composto inestable de seis carbonos, que se descompón en dúas moléculas de ácido 3-fosfoglicérico. Trátase de moléculas constituídas por tres átomos de carbono, polo que as plantas que seguen esta vía metabólica se chaman C3. Se ben moitas especies vexetais tropicais que medran en zonas desérticas, modifican o ciclo de tal xeito que o primeiro produto fotosintético non é unha molécula de tres átomos de carbono, senón de catro (ácido dicarboxílico), constituíndose un método alternativo denominado vía da C4, ao igual que este tipo de plantas.

Con posterioridade prodúcese a redución do dióxido de carbono fixado. Por medio do consumo de ATP e do NADPH obtidos na fase luminosa, o ácido 3-fosfoglicérico redúcese a gliceraldehído 3-fosfato, que pode seguir camiños diversos. A primeira vía consiste na rexeneración da ribulosa 1-5-difosfato; a maior parte do produto invístese niso. Outras rutas posibles involucran biosínteses alternativas: o gliceraldehído 3-fosfato que queda no estroma do cloroplasto pode destinarse á síntese de aminoácidos, ácidos graxos e amidón; o que pasa ao citosol orixina a glicosa e a frutosa, que ao combinarse xeran a sacarosa, azucre de transporte da maioría das plantas, presente no zume elaborado, conducida polo floema, mediante un proceso semellante á glicólise en sentido inverso.

A rexeneración da ribulosa-1,5-difosfato ten lugar a partir do gliceraldehído 3-fosfato, por medio dun proceso complexo onde se suceden compostos de catro, cinco e sete carbonos, similar ao ciclo das pentosas fosfato en sentido inverso (no ciclo de Calvin, por cada molécula de dióxido de carbono que se incorpora requírense dúas de NADPH e tres de ATP).

Síntese de compostos nitroxenados

Grazas ao ATP e ao NADPH obtidos na fase luminosa, pódese levar a cabo a redución dos ións nitrato que están disoltos no chan en tres etapas.

Primeiro, os ións nitrato redúcense a ións nitrito polo enzima nitrato redutasa, requiríndose o consumo dun NADPH. Máis tarde, os nitritos redúcense a amoníaco grazas, novamente, ao enzima nitrato redutasa e volvéndose a gastar un NADPH. Finalmente, o amoníaco que se obtivo e que é nocivo para a planta, é captado con rapidez polo ácido α-cetoglutárico orixinándose o ácido glutámico (reacción catalizada polo enzima glutamato sintetasa), a partir do cal os átomos de nitróxeno poden pasar en forma de grupo amino a outros cetoácidos e producir novos aminoácidos.

Non obstante, algunhas bacterias pertencentes aos xéneros Azotobacter, Clostridium e Rhizobium e determinadas cianobacterias (Anabaena e Nostoc) teñen a capacidade de aproveitar o nitróxeno atmosférico, transformando as moléculas deste elemento químico en amoníaco mediante o proceso chamado fixación do nitróxeno. Por iso estes organismos reciben o nome de fixadores de nitróxeno.

Síntese de compostos orgánicos con xofre

Partindo do NADPH e do ATP da fase luminosa, o ión sulfato é reducido a ión sulfito, para finalmente volver reducirse a sulfuro de hidróxeno. Este composto químico, cando se combina coa acetilserina produce o aminoácido cisteína, pasando a formar parte da materia orgánica celular.

O proceso da clorofilaEditar

 
Células vexetais, en cuxo interior se albiscan os cloroplastos.

As follas das plantas conteñen células fotosintetizadoras, que conteñen clorofila, esta ordénase en estruturas chamadas de cloroplastos, estes posúen forma alongada, elíptica ou globular e revístense dunha membrana dupla. Estas estruturas son sensíbeis á luz.

A clorofila é responsábel da absorción de enerxía luminosa que será utilizada para unha reacción complexa onde o dióxido de carbono reacciona coa auga, formándose glicosa (base dos hidratos de carbono), que se almacena e utilizada polas plantas, liberándose, como residuo desta operación, moléculas de osíxeno.

Organismos fotosintetizadoresEditar

 
A folla é o principal sitio dunha planta onde se produce a fotosíntese.

Alén das plantas verdes ou Viridiplantae (nas que actualmente están incluídas as plantas terrestres e as algas verdes), inclúense entre os organismos fotosintéticos certos protistas (como as diatomáceas e as euglenoidinas), os cianófitos (algas verde-azuladas) e diversas bacterias.

Factores que afectan a fotosínteseEditar

A acumulación dos produtos fotosintetizadosEditar

O alimento producido durante a fotosíntese acumúlase posteriormente en varios órganos das plantas, esencialmente baixo a forma de amidón:

A importancia da fotosínteseEditar

A importancia da fotosíntese para a vida na Terra é enorme. A fotosíntese é o primeiro e principal proceso de transformación de enerxía na biosfera. Ao alimentármonos, parte das substancias orgánicas, producidas grazas á fotosíntese, entran na nosa constitución celular, en canto outras (os nutrientes enerxéticos) fornecen a enerxía necesaria ás nosas funcións vitais, como o crecemento, a reprodución etc...

Subprodutos remotos da fotosínteseEditar

Indirectamente, mais non menos efectivamente, o petróleo e o carbón, que se utilizan polo ser humano como fonte de enerxía, parecen ter orixe na fotosíntese, pois, son produtos orgánicos considerados provenientes de seres vivos (plantas ou seres que se alimentaban de plantas) doutras eras xeolóxicas.

Animais relacionados coa fotosínteseEditar

Se ben a fotosíntese é un mecanismo inherente ás plantas, ás algas, ás bacterias e a outros organismos, hai animais que, en certas situacións aproveitan a fotosíntese producida por algas para obter osíxeno.

A lesma mariña Elysia chlorotica practica un fenómeno denominado cleptoplastia, que consiste en dixerir a alga Vaucheria litorea parcialmente, de tal xeito que os seus cloroplastos quedan intactos e os almacena na súa vía dixestiva para aproveitar a súa capacidade fotosintética e obter a enerxía precisa para subsistir varios meses sen necesidade de recorrer a organismos externos. Produto da presenza da clorofila dentro dos cloroplastos almacenados, E. chlorotica adquire unha cor verde característica presente en organismos fotosintetizadores.[2][3][4]

A alga Oophila amblystomatis ingresa no ovo de Ambystoma maculatum e implántase na membrana. O revestimento da membrana do ovo prevén a súa deshidratación, pero ademais inhibe o intercambio de gases como o osíxeno, un factor elemental para o desenvolvemento do embrión da salamántiga. Esta falta de osíxeno é proporcionada pola fotosíntese de O. amblystomatis, contribuíndo así ao desenvolvemento de A. maculatum, mentres que esta metaboliza dióxido de carbono, que é consumido pola alga, establecendo unha relación simbiótica entre ambos os organismos.[5][6][7][8]

NotasEditar

  1. Smith, A. L. (1997). Oxford dictionary of biochemistry and molecular biology. Oxford University Press (Oxford [Oxfordshire]). pp. 508. ISBN 0-19-854768-4. Photosynthesis - the synthesis by organisms of organic chemical compounds, esp. carbohydrates, from carbon dioxide using energy obtained from light rather than the oxidation of chemical compounds. 
  2. Green sea slug can steal plant genes and produce chlorophyll. Digital Journal, 15 de enero de 2010.
  3. Mujer, C.V., Andrews, D.L., Manhart, J.R., Pierce, S.K., & Rumpho, M.E. (1996). Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Cell Biology, 93, 12333-12338
  4. Rumpho ME, Worful JM, Lee J, et al. (novembro de 2008). "Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica". Proc. Natl. Acad. Sci. U.S.A. 105 (46): 17867–17871. doi:10.1073/pnas.0804968105. PMC 2584685. PMID 19004808.
  5. Rumpho ME, Worful JM, Lee J, et al. (novembro de 2008). "Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica". Proc. Natl. Acad. Sci. U.S.A. 105 (46): 17867–17871. doi:10.1073/pnas.0804968105. PMC 2584685. PMID 19004808
  6. Burns, John A; Zhang, Huanjia; Hill, Elizabeth; Kim, Eunsoo; Kerney, Ryan (2 de maio de 2017). "Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis". eLife. 6. doi:10.7554/eLife.22054. PMC 5413350. PMID 28462779
  7. Hutchison, Victor H.; Hammen, Carl S. (1958). "Oxygen Utilization in the Symbiosis of Embryos of the Salamander, Ambystoma maculatum and the Alga, Oophila amblystomatis". Biological Bulletin. 115 (3): 483–489. doi:10.2307/1539111. JSTOR 1539111.
  8. Petherick, Anna (30 de xullo de 2010). "A solar salamander". Nature. doi:10.1038/news.2010.384.

Véxase taménEditar

BibliografíaEditar

  • Azcón-Bieto, J. y M. Talón (eds.). Fundamentos de Fisiología Vegetal. Madrid: McGraw-Hill/Interamericana, Edicions Universitat de Barcelona, 2000
  • Buchanan, B. B., W. Gruissem, R. Jones. Biochemistry and Molecular Biology of plants. Rockville (USA): American Society of Plant Physiologists, 2000
  • Dennis, D. T. y D. H. Turpin (eds). Plant metabolism. Plant physiology, Biochemistry, and Molecular Biology. Orlando, EUA: Academic Press, 1998
  • Heldt, H. W. Plant Biochemistry and Molecular Biology. Oxford: Oxford University Press, 2004
  • Salisbury, Frank B. y Cleon W. Ross. Plant Physiology. Wadsworth, 1992
  • Taiz, L. y E. Zeiger. Plant Physiology. Sunderland, Massachusetts: Sinauer Associates Inc., 2002

Ligazóns externasEditar