Receptor de andróxenos

O receptor de andróxenos (AR), tamén chamado NR3C4 (receptor nuclear subfamilia 3, grupo C, membro 4), é un tipo de receptor nuclear[5] que é activado no citoplasma pola unión de calquera das hormonas androxénicas, como a testosterona e a dihidrotestosterona[6] e despois trasladado ao núcleo celular. O receptor de andróxenos humano está codificado no xene AR do cromosoma X. O receptor de andróxenos está relacionado estreitamente co receptor de proxesterona, polo que as proxestinas en maiores doses poden bloquear o receptor de andróxenos.[7][8]

Receptor de andróxenos
Estruturas dispoñibles
PDBBuscar ortólogos: PDBe, RCSB
Identificadores
Nomenclatura
Identificadores
externos
LocusCr. X q12
Padrón de expresión de ARNm
Máis información
Ortólogos
Especies
Humano Rato
Entrez
367 11835
Ensembl
Véxase HS Véxase MM
UniProt
P10275 P19091
RefSeq
(ARNm)
NM_001011645 NM_013476
RefSeq
(proteína) NCBI
NP_000035 NP_038504
Localización (UCSC)
Cr. X:
67.54 – 67.73 Mb
Cr. X:
97.19 – 97.37 Mb
PubMed (Busca)
367


11835
Receptor de andróxenos
Estrutura cristalina do dominio de unión a ligando do receptor de andróxenos humano unido a un péptido NH2-terminal receptor de andróxenos, ar20-30 e r1881
Identificadores
SímboloAndrogen_recep
PfamPF02166
InterProIPR001103
Función normal do receptor de andróxenos. A testosterona (T) entra na célula e, se está presente a 5-alfa-redutase, é convertida en dihidrotestosterona (DHT). O receptor de andróxenos (AR), despois de que se une a el o esteroide, sofre un cambio conformacional e libera proteínas de choque térmico (htps). A fosforilación (P) ocorre antes ou despois da unión do esteroide. O receptor de andróxenos trasládase ao núcleo onde ocorren a dimerización, a unión ao ADN e o recrutamento de coactivadores. Os xenes diana son transcritos a (ARNm) e traducidos a proteínas.[1][2][3][4]

A principal función do receptor de andróxenos é actuar como factor de transcrición que se une ao ADN que regula a expresión xénica;[9] porén, ten ademais outras funcións.[10] Os xenes regulados por andróxenos son cruciais para o desenvolvemento e mantemento do fenotipo sexual masculino.

Función

editar

Efectos sobre o desenvolvemento

editar

Nalgúns tipos de células a testosterona interacciona directamente con receptores de andróxenos, mentres que noutras a testosterona é convertida pola 5-alfa-redutase en dihidrotestosterona, un agonista aínda máis potente da activación de andróxenos.[11] A testosterona parece ser a hormona primaria activadora do receptor de andróxenos no conduto de Wolff, mentres que a dihidrotestosterona é a principal hormona androxénica no seo uroxenital, tubérculo uroxenital e folículos pilosos.[12] A testosterona é, por tanto, a principal responsable do desenvolvemento das características sexuais primarias masculinas, mentres que a dihidrotestosterona é responsable das características sexuais secundarias.

Os andróxenos causan a lenta maduración dos ósos, mais a maioría dos efectos de maduración potentes proceden dos estróxenos producidos por aromatización de andróxenos. Os usuarios de esteroides adolescentes poden encontrar que o seu crecemento queda atrasado polo exceso de andróxenos e/ou estróxenos. As persoas con poucas hormonas sexuais poden ser de baixa altura durante a puberdade pero acaban sendo máis altos de adultos como nas síndromes de insensibilidade aos andróxenos ou aos estróxenos.[13]

Os estudos con ratos knockout indican que o receptor de andróxenos é esencial para a fertilidade feminina normal, sendo necesarios para o desenvolvemento e completa funcionalidade dos folículos ováricos e a ovulación, funcionando por medio de mecanismos intraováricos e neuroendócrinos.[14]

Mantemento da integridade esquelética en machos

editar

Por medio do receptor de andróxenos, os andróxenos desempeñan un papel clave no mantemento da integridade esquelética dos machos. A regulación desta integridade pola sinalización realizada polo receptor de andróxenos pode atribuírse a osteoblastos e osteocitos.[15]

Papel en femias

editar

O receptor de andróxenos xoga un papel na regulación das funcións sexuais, somáticas e comportamentais das femias. Os datos experimentais obtidos usando ratos femias knockout para o receptor de andróxenos, proporcionan probas de que a promoción do crecemento cardíaco, hipertrofia renal, crecemento óseo cortical e regulación da estrutura ósea trabecular é o resultado de accións dependentes da unión ao ADN do receptor de andróxenos en femias.

Ademais, a importancia de comprender os receptores de andróxenos en femias débese ao seu papel en varios trastornos xenéticos como a síndrome de insensibilidade aos andróxenos. As insensibilidades completa e parcial aos andróxenos son o resultado de mutacións nos xenes que codifican o receptor de andróxenos. Estas mutacións causan a inactivación do receptor de andróxenos debido a que dan resistencia á testosterona circulante, e coñécense máis de 400 mutacións diferentes no receptor de andróxenos.[16]

Mecanismo de acción

editar

Xenómico

editar

O mecanismo primario de acción dos receptores de andróxenos é a regulación directa da transcrición xénica. A unión dun andróxeno ao receptor de andróxenos ten como resultado un cambio conformacional no receptor que, á súa vez, causa a disociación das proteínas de choque térmico, o transporte desde o citosol ao núcleo celular e a dimerización. O dímero receptor de andróxenos únese a unha secuencia específica de ADN chamada elemento de resposta a hormonas. Os receptores de andróxenos interaccionan con outras proteínas no núcleo, orixinando unha regulación á alza ou á baixa da transcrición dun xene específico.[17] A regulación á alza ou a activación da transcrición ten como resultado o incremento da síntese de certos ARN mensaxeiros, os cales, á súa vez, son traducidos polos ribosomas para producir proteínas específicas. Un dos xenes diana coñecidos da activación do receptor de andróxenos é o do receptor do factor de crecemento similar á insulina 1 (IGF-1R).[18] Así, os cambios nos niveis de proteínas específicas nas células é un modo como os receptores de andróxenos controlan o comportamento celular.

Unha función do receptor de andróxenos que é independente da unión directa á súa secuencia de ADN diana é facilitada polo recrutamento por medio doutras proteínas de unión ao ADN. Un exemplo é o factor de resposta ao soro, unha proteína que activa varios xenes que causan o crecemento muscular.[19]

O receptor de andróxenos é modifiicado por modificación postraducional por acetilación,[20] que promove directamente a transactivación mediada polo receptor de andróxenos, a apoptose[21] e o crecemento independente do contacto de células de cancro de próstata.[22] A acetilación do receptor de andróxenos é inducida polos andróxenos[23] e determina o recrutamento na cromatina.[24] A acetilación do sitio do receptor de andróxenos é unha diana clave das histona desacetilases dependentes de NAD+ e dependentes de TSA[25] e dos ARNs non codificantes longos.[26]

Non xenómico

editar

Máis recentemente, os receptores de andróxenos mostraron ter un segundo modo de acción. Como tamén se observou noutros receptores de hormonas esteroides como os receptores de estróxenos, os receptores de andróxenos poden ter accións que son independentes das súas interaccións co ADN.[10][27] Os receptores de andróxenos interaccionan con certas proteínas de transdución de sinais no citoplasma. A unión de andróxenos a receptores de andróxenos citoplasmáticos poden causar rápidos cambios na función celular independentes de cambios na transcrición xénica, como cambios no transporte iónico. A regulación de vías de transdución de sinais polos receptores de andróxenos citoplásmicos pode levar indirectamente a cambios na transcrición de xenes, por exemplo, ao conducir á fosforilación doutros factores de transcrición.

Xenética

editar

Nos humanos o receptor de andróxenos está codificado no xene AR, localizado no cromosoma X na posición Xq11–12.[28][29]

Deficiencias

editar

Descubríronse polo menos 165 mutacións causantes de doenzas neste xene. [30] A síndrome de insensibilidade aos andróxenos, anteriormente chamada feminización testicular, é causada por unha mutación no xene do receptor de andróxenos do cromosoma X (locus: Xq11–Xq12).[31] O receptor de andróxenos parece afectar a fisioloxía das neuronas e é defectivo na enfermidade de Kennedy.[32][33] Ademais, as mutacións puntuais e os polimorfismos de repetición de trinucleótidos foron ligados a outros varios trastornos.[34]

Repeticións CAG

editar

O xene AR contén repeticións CAG que afectan á función receptora, de maneira que poucas repeticións orixinan un incremento da sensibilidade do receptor a andróxenos circulantes e un maior númeor de repeticións causan unha diminución da súa sensibilidade. Os estudos realizados mostraron que hai unha variación racial nas repeticións CAG,[35][36] na que, por exemplo, os afroamericanos teñen menos repeticións que os norteamericanos brancos non hispanos.[35] As tendencias raciais nas repeticións CAG correspóndese coa incidencia e mortalidade do cancro de próstatra neses grupos.

Estrutura

editar
 
Os dominios estruturais das dúas isoformas (AR-A e AR-B) do receptor de andróxenos humano. As cifras sobre as barras refírense aos residuos de aminoácidos que separan os dominios que empezan polo N-terminal (esquerda) e acaban no C-terminal (dereita). NTD = dominio N-terminal, DBD = dominio de unión ao ADN, LBD = dominio de unión ao ligando, AF = función de activación.

Isoformas

editar

Identificáronse dúas isoformas do receptor de andróxenos, denominadas A e B:[37]

Dominios

editar

Igual que outros receptores nucleares, o receptor de andróxenos é de estrutura modular e está composto polos seguintes dominios funcionais designados con letras do A ao F:[39]

  • A/B) – Dominio regulador N-terminal, que contén:[40]
    • a función de activación 1 (AF-1) entre os residuos 101 e 370, necesaria para unha completa actividade transcricional activada por ligando;
    • a función de activación 5 (AF-5) entre os residuos 360–485, que é responsable da actividade constitutiva (actividade que presenta sen ter unido o ligando);
    • a superficie de dimerización, que abrangue os residuos 1–36 (contén o motivo FXXLF; onde F = fenilalanina, L = leucina e X = calquera residuo de aminoácido) e 370–494, ambos os cales interaccionan co dominio de unión ao ligando (LBD) nunha interacción intramolecular[41][42][43] cabeza con cola.[44][45][46]
  • C) – Domino de unión ao ADN (DBD).
  • D) – Rexión bisagra; rexión flexible que conecta o DBD co LBD; xunto co DBD, contén un sinal de localización nuclear dependente de ligando.[47]
  • E) – Dominio de unión ao ligando (LBD), que contén:
  • F) – Dominio C-terminal.

Variantes de empalme

editar

AR-V7 é unha variante de empalme ou splicing do receptor de andróxenos que se pode detectar en células tumorias circulantes de pacientes de cancro de próstata metastáticos.[49][50] e serve para predicir a resistencia a algúns fármacos.[51]

Importancia clínica

editar

Unha expresión alta en receptores de andróxenos foi ligada á agresión e libido ao afectar os eixes hipotálamo-hipofisario-adrenal e hipotálamo-hipofisario-gonadal.[52]

A actividade correguladora anormal do receptor de andróxenos pode contribuír á progresión do cancro de próstata.[53]

Ligandos

editar
Afinidades[a][54]
Composto RBA[b]
Metribolona 100
Dihidrotestosterona 85
Acetato de ciproterona 7,8
Bicalutamida 1,4
Nilutamida 0,9
Hidroxiflutamida 0,57
Flutamida <0,0057
Notas:
  1. En receptores de andróxenos; medido en tecido prostático humano.
  2. En relación á Metribolona, que é por definición do 100%

Agonistas

editar

Mesturados

editar

Antagonistas

editar

Como diana de fármacos

editar

O receptor de andróxenos é unha importante diana terapéutica no cancro de próstata. Así, desenvolvéronse moitos antiandróxenos, que principalmente teñen como diana o dominio de unión ao ligando da proteína.[56] Os ligandos do receptor de andróxenos poden clasificarse segundo a súa estrutura (esteroide ou non esteroide) ou baseándose na súa capacidade para activar ou inhibir a transcrición (agonistas ou antagonistas).[57] Aínda están en proceso de desenvolvemento inhibidores que teñen como diana dominios funcionais alternativos (dominio N-terminal, dominio de unión ao ADN) da proteína.[55]

Interaccións

editar

O receptor de andróxenos presenta interaccións con:

  1. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS (xuño de 1995). "Androgen receptor defects: historical, clinical, and molecular perspectives". Endocrine Reviews 16 (3): 271–321. PMID 7671849. doi:10.1210/edrv-16-3-271. 
  2. Gottlieb B, Lombroso R, Beitel LK, Trifiro MA (xaneiro de 2005). "Molecular pathology of the androgen receptor in male (in)fertility". Reproductive Biomedicine Online 10 (1): 42–8. PMID 15705293. doi:10.1016/S1472-6483(10)60802-4. 
  3. Choong CS, Wilson EM (decembro de 1998). "Trinucleotide repeats in the human androgen receptor: a molecular basis for disease". Journal of Molecular Endocrinology 21 (3): 235–57. PMID 9845666. doi:10.1677/jme.0.0210235. 
  4. Meehan KL, Sadar MD (maio de 2003). "Androgens and androgen receptor in prostate and ovarian malignancies". Frontiers in Bioscience 8 (1–3): d780–800. PMID 12700055. doi:10.2741/1063. 
  5. Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V, Hochberg RB, McKay L, Renoir JM, Weigel NL, Wilson EM, McDonnell DP, Cidlowski JA (decembro de 2006). "International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors". Pharmacological Reviews 58 (4): 782–97. PMID 17132855. doi:10.1124/pr.58.4.9. 
  6. Roy AK, Lavrovsky Y, Song CS, Chen S, Jung MH, Velu NK, Bi BY, Chatterjee B (1999). Regulation of androgen action. Vitamins & Hormones 55. pp. 309–52. ISBN 978-0-12-709855-5. PMID 9949684. doi:10.1016/S0083-6729(08)60938-3. 
  7. Bardin CW, Brown T, Isomaa VV, Jänne OA (1983). "Progestins can mimic, inhibit and potentiate the actions of androgens". Pharmacology & Therapeutics 23 (3): 443–59. PMID 6371845. doi:10.1016/0163-7258(83)90023-2. 
  8. Raudrant D, Rabe T (2003). "Progestogens with antiandrogenic properties". Drugs 63 (5): 463–92. PMID 12600226. doi:10.2165/00003495-200363050-00003. 
  9. Mooradian AD, Morley JE, Korenman SG (febreiro de 1987). "Biological actions of androgens". Endocrine Reviews 8 (1): 1–28. PMID 3549275. doi:10.1210/edrv-8-1-1. 
  10. 10,0 10,1 Heinlein CA, Chang C (outubro de 2002). "The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions". Molecular Endocrinology 16 (10): 2181–7. PMID 12351684. doi:10.1210/me.2002-0070. 
  11. Davison SL, Bell R (abril de 2006). "Androgen physiology". Seminars in Reproductive Medicine 24 (2): 71–7. PMID 16633980. doi:10.1055/s-2006-939565. 
  12. Sinisi AA, Pasquali D, Notaro A, Bellastella A (2003). "Sexual differentiation". Journal of Endocrinological Investigation 26 (3 Suppl): 23–28. PMID 12834017. 
  13. Frank GR (setembro de 2003). "Role of estrogen and androgen in pubertal skeletal physiology". Medical and Pediatric Oncology 41 (3): 217–21. PMID 12868122. doi:10.1002/mpo.10340. 
  14. Walters KA, Simanainen U, Handelsman DJ (marzo de 2010). "Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models". Human Reproduction Update 16 (5): 543–58. PMID 20231167. doi:10.1093/humupd/dmq003. 
  15. Sinnesael M, Claessens F, Laurent M, Dubois V, Boonen S, Deboel L, Vanderschueren D (decembro de 2012). "Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes". Journal of Bone and Mineral Research 27 (12): 2535–43. PMID 22836391. doi:10.1002/jbmr.1713. 
  16. Galani A, Kitsiou-Tzeli S, Sofokleous C, Kanavakis E, Kalpini-Mavrou A (2008). "Androgen insensitivity syndrome: clinical features and molecular defects". Hormones (Athens). 7 (3): 217–29. doi:10.14310/horm.2002.1201. PMID 18694860 .
  17. Heemers HV, Tindall DJ (decembro de 2007). "Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex". Endocrine Reviews 28 (7): 778–808. PMID 17940184. doi:10.1210/er.2007-0019. 
  18. Pandini G, Mineo R, Frasca F, Roberts CT, Marcelli M, Vigneri R, Belfiore A (marzo de 2005). "Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells". Cancer Research 65 (5): 1849–57. PMID 15753383. doi:10.1158/0008-5472.CAN-04-1837. 
  19. Vlahopoulos S, Zimmer WE, Jenster G, Belaguli NS, Balk SP, Brinkmann AO, Lanz RB, Zoumpourlis VC, Schwartz RJ (marzo de 2005). "Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene". The Journal of Biological Chemistry 280 (9): 7786–92. PMID 15623502. doi:10.1074/jbc.M413992200. 
  20. Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez L, Ogryzko V, Avantaggiati ML, Pestell RG (xullo de 2000). "p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation". The Journal of Biological Chemistry 275 (27): 20853–60. PMID 10779504. doi:10.1074/jbc.M000660200. 
  21. Fu M, Wang C, Wang J, Zhang X, Sakamaki T, Yeung YG, Chang C, Hopp T, Fuqua SA, Jaffray E, Hay RT, Palvimo JJ, Jänne OA, Pestell RG (maio de 2002). "Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function". Molecular and Cellular Biology 22 (10): 3373–88. PMC 133781. PMID 11971970. doi:10.1128/mcb.22.10.3373-3388.2002. 
  22. Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D, Zhang X, Albanese C, Balk S, Chang C, Fan S, Rosen E, Palvimo JJ, Jänne OA, Muratoglu S, Avantaggiati ML, Pestell RG (decembro de 2003). "Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth". Molecular and Cellular Biology 23 (23): 8563–75. PMC 262657. PMID 14612401. doi:10.1128/mcb.23.23.8563-8575.2003. 
  23. Gong J, Zhu J, Goodman OB, Pestell RG, Schlegel PN, Nanus DM, Shen R (marzo de 2006). "Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells". Oncogene 25 (14): 2011–21. PMID 16434977. doi:10.1038/sj.onc.1209231. 
  24. Fu M, Rao M, Wu K, Wang C, Zhang X, Hessien M, Yeung YG, Gioeli D, Weber MJ, Pestell RG (xullo de 2004). "The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity". The Journal of Biological Chemistry 279 (28): 29436–49. PMID 15123687. doi:10.1074/jbc.M313466200. 
  25. 25,0 25,1 Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, Pattabiraman N, Pestell TG, Wang F, Quong AA, Wang C, Pestell RG (novembro de 2006). "Hormonal control of androgen receptor function through SIRT1". Molecular and Cellular Biology 26 (21): 8122–35. PMC 1636736. PMID 16923962. doi:10.1128/MCB.00289-06. 
  26. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG (agosto de 2013). "lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs". Nature 500 (7464): 598–602. Bibcode:2013Natur.500..598Y. PMC 4034386. PMID 23945587. doi:10.1038/nature12451. 
  27. Fix C, Jordan C, Cano P, Walker WH (xullo de 2004). "Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells". Proceedings of the National Academy of Sciences of the United States of America 101 (30): 10919–24. Bibcode:2004PNAS..10110919F. PMC 503720. PMID 15263086. doi:10.1073/pnas.0404278101. 
  28. Chang CS, Kokontis J, Liao ST (abril de 1988). "Molecular cloning of human and rat complementary DNA encoding androgen receptors". Science 240 (4850): 324–6. Bibcode:1988Sci...240..324C. PMID 3353726. doi:10.1126/science.3353726. 
  29. Trapman J, Klaassen P, Kuiper GG, van der Korput JA, Faber PW, van Rooij HC, Geurts van Kessel A, Voorhorst MM, Mulder E, Brinkmann AO (maio de 1988). "Cloning, structure and expression of a cDNA encoding the human androgen receptor". Biochemical and Biophysical Research Communications 153 (1): 241–8. PMID 3377788. doi:10.1016/S0006-291X(88)81214-2. 
  30. Šimčíková D, Heneberg P (decembro de 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports 9 (1): 18577. Bibcode:2019NatSR...918577S. PMC 6901466. PMID 31819097. doi:10.1038/s41598-019-54976-4. 
  31. Brown TR (1995). "Human androgen insensitivity syndrome". Journal of Andrology 16 (4): 299–303. PMID 8537246. Arquivado dende o orixinal (abstract) o 2008-07-24. 
  32. Kennedy WR, Alter M, Sung JH (xullo de 1968). "Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait". Neurology 18 (7): 671–80. PMID 4233749. doi:10.1212/WNL.18.7.671. 
  33. Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP (outubro de 2006). "Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model". The Journal of Clinical Investigation 116 (10): 2663–72. PMC 1564432. PMID 16981011. doi:10.1172/JCI28773. 
  34. Rajender S, Singh L, Thangaraj K (marzo de 2007). "Phenotypic heterogeneity of mutations in androgen receptor gene". Asian Journal of Andrology 9 (2): 147–79. PMID 17334586. doi:10.1111/j.1745-7262.2007.00250.x. 
  35. 35,0 35,1 Sartor O, Zheng Q, Eastham JA (febreiro de 1999). "Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer". Urology 53 (2): 378–80. PMID 9933058. doi:10.1016/s0090-4295(98)00481-6. 
  36. Weintrob N, Eyal O, Slakman M, Segev Becker A, Israeli G, Kalter-Leibovici O, Ben-Shachar S (2018). "The effect of CAG repeats length on differences in hirsutism among healthy Israeli women of different ethnicities". PLOS ONE 13 (3): e0195046. Bibcode:2018PLoSO..1395046W. PMC 5871002. PMID 29584789. doi:10.1371/journal.pone.0195046. 
  37. Wilson CM, McPhaul MJ (febreiro de 1994). "A and B forms of the androgen receptor are present in human genital skin fibroblasts". Proceedings of the National Academy of Sciences of the United States of America 91 (4): 1234–8. Bibcode:1994PNAS...91.1234W. PMC 43131. PMID 8108393. doi:10.1073/pnas.91.4.1234. 
  38. Gregory CW, He B, Wilson EM (decembro de 2001). "The putative androgen receptor-A form results from in vitro proteolysis". Journal of Molecular Endocrinology 27 (3): 309–19. PMID 11719283. doi:10.1677/jme.0.0270309. 
  39. Brinkmann AO, Klaasen P, Kuiper GG, van der Korput JA, Bolt J, de Boer W, Smit A, Faber PW, van Rooij HC, Geurts van Kessel A (1989). "Structure and function of the androgen receptor". Urological Research 17 (2): 87–93. PMID 2734982. doi:10.1007/BF00262026. 
  40. Jenster G, van der Korput HA, Trapman J, Brinkmann AO (marzo de 1995). "Identification of two transcription activation units in the N-terminal domain of the human androgen receptor" (PDF). The Journal of Biological Chemistry 270 (13): 7341–6. PMID 7706276. doi:10.1074/jbc.270.13.7341. 
  41. Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI (xullo de 2005). "The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions". Proceedings of the National Academy of Sciences of the United States of America 102 (28): 9802–7. Bibcode:2005PNAS..102.9802S. PMC 1168953. PMID 15994236. doi:10.1073/pnas.0408819102. 
  42. Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang CY, Hager GL, Saatcioglu F (marzo de 2007). "Ligand-specific dynamics of the androgen receptor at its response element in living cells". Molecular and Cellular Biology 27 (5): 1823–43. PMC 1820481. PMID 17189428. doi:10.1128/MCB.01297-06. 
  43. van Royen ME, Cunha SM, Brink MC, Mattern KA, Nigg AL, Dubbink HJ, Verschure PJ, Trapman J, Houtsmuller AB (abril de 2007). "Compartmentalization of androgen receptor protein-protein interactions in living cells". The Journal of Cell Biology 177 (1): 63–72. PMC 2064112. PMID 17420290. doi:10.1083/jcb.200609178. 
  44. Langley E, Zhou ZX, Wilson EM (decembro de 1995). "Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer". The Journal of Biological Chemistry 270 (50): 29983–90. PMID 8530400. doi:10.1074/jbc.270.50.29983. 
  45. Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkmann AO (agosto de 1998). "Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)". Molecular Endocrinology 12 (8): 1172–83. PMID 9717843. doi:10.1210/me.12.8.1172. 
  46. 46,0 46,1 Dubbink HJ, Hersmus R, Verma CS, van der Korput HA, Berrevoets CA, van Tol J, Ziel-van der Made AC, Brinkmann AO, Pike AC, Trapman J (setembro de 2004). "Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor". Molecular Endocrinology 18 (9): 2132–50. PMID 15178743. doi:10.1210/me.2003-0375. 
  47. Kaku N, Matsuda K, Tsujimura A, Kawata M (agosto de 2008). "Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5'-triphosphate systems". Endocrinology 149 (8): 3960–9. PMC 2488236. PMID 18420738. doi:10.1210/en.2008-0137. 
  48. Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, Wang Z (outubro de 2003). "Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor". The Journal of Biological Chemistry 278 (43): 41998–2005. PMID 12923188. doi:10.1074/jbc.M302460200. 
  49. Silberstein JL, Taylor MN, Antonarakis ES (abril de 2016). "Novel Insights into Molecular Indicators of Response and Resistance to Modern Androgen-Axis Therapies in Prostate Cancer". Current Urology Reports (en inglés) 17 (4): 29. PMC 4888068. PMID 26902623. doi:10.1007/s11934-016-0584-4. 
  50. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J (setembro de 2014). "AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer". The New England Journal of Medicine 371 (11): 1028–38. PMC 4201502. PMID 25184630. doi:10.1056/NEJMoa1315815. 
  51. "Biomarker-Driven Therapy With Nivolumab and Ipilimumab in Treating Patients With Metastatic Hormone-Resistant Prostate Cancer Expressing AR-V7 - Full Text View - ClinicalTrials.gov". clinicaltrials.gov. Consultado o 2016-02-27. 
  52. Cunningham RL, Lumia AR, McGinnis MY (2012). "Androgen receptors, sex behavior, and aggression". Neuroendocrinology 96 (2): 131–40. PMC 3474193. PMID 22414851. doi:10.1159/000337663. 
  53. Heinlein CA, Chang C (abril de 2002). "Androgen receptor (AR) coregulators: an overview". Endocrine Reviews 23 (2): 175–200. PMID 11943742. doi:10.1210/edrv.23.2.0460. 
  54. Ayub M, Levell MJ (agosto de 1989). "The effect of ketoconazole related imidazole drugs and antiandrogens on [3H] R 1881 binding to the prostatic androgen receptor and [3H]5 alpha-dihydrotestosterone and [3H]cortisol binding to plasma proteins". J. Steroid Biochem. 33 (2): 251–5. PMID 2788775. doi:10.1016/0022-4731(89)90301-4. 
  55. 55,0 55,1 Elshan ND, Rettig MB, Jung ME (22 novembro de 2018). "Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain". Medicinal Research Reviews 39 (3): 910–960. PMC 6608750. PMID 30565725. doi:10.1002/med.21548. 
  56. Helsen C, Van den Broeck T, Voet A, Prekovic S, Van Poppel H, Joniau S, Claessens F (agosto de 2014). "Androgen receptor antagonists for prostate cancer therapy". Endocrine-Related Cancer 21 (4): T105–18. PMID 24639562. doi:10.1530/ERC-13-0545. 
  57. Gao W, Bohl CE, Dalton JT (setembro de 2005). "Chemistry and structural biology of androgen receptor". Chemical Reviews 105 (9): 3352–70. PMC 2096617. PMID 16159155. doi:10.1021/cr020456u. 
  58. 58,0 58,1 Lin HK, Yeh S, Kang HY, Chang C (xuño de 2001). "Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor". Proceedings of the National Academy of Sciences of the United States of America 98 (13): 7200–5. Bibcode:2001PNAS...98.7200L. PMC 34646. PMID 11404460. doi:10.1073/pnas.121173298. 
  59. Shatkina L, Mink S, Rogatsch H, Klocker H, Langer G, Nestl A, Cato AC (outubro de 2003). "The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor". Molecular and Cellular Biology 23 (20): 7189–97. PMC 230325. PMID 14517289. doi:10.1128/MCB.23.20.7189-7197.2003. 
  60. Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC (abril de 2001). "Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity". The Journal of Biological Chemistry 276 (16): 12718–24. PMID 11278763. doi:10.1074/jbc.M010841200. 
  61. Froesch BA, Takayama S, Reed JC (May 1998). "BAG-1L protein enhances androgen receptor function". The Journal of Biological Chemistry 273 (19): 11660–6. PMID 9565586. doi:10.1074/jbc.273.19.11660. 
  62. 62,0 62,1 62,2 62,3 Song LN, Coghlan M, Gelmann EP (xaneiro de 2004). "Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor". Molecular Endocrinology 18 (1): 70–85. PMID 14593076. doi:10.1210/me.2003-0189. 
  63. 63,0 63,1 63,2 Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN, Balk SP (outubro de 2004). "Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells". Molecular Endocrinology 18 (10): 2388–401. PMID 15256534. doi:10.1210/me.2003-0436. 
  64. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z (marzo de 2002). "Linking beta-catenin to androgen-signaling pathway". The Journal of Biological Chemistry 277 (13): 11336–44. PMID 11792709. doi:10.1074/jbc.M111962200. 
  65. Amir AL, Barua M, McKnight NC, Cheng S, Yuan X, Balk SP (agosto de 2003). "A direct beta-catenin-independent interaction between androgen receptor and T cell factor 4". The Journal of Biological Chemistry 278 (33): 30828–34. PMID 12799378. doi:10.1074/jbc.M301208200. 
  66. Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC (agosto de 2003). "Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis". Oncogene 22 (36): 5602–13. PMID 12944908. doi:10.1038/sj.onc.1206802. 
  67. Pawlowski JE, Ertel JR, Allen MP, Xu M, Butler C, Wilson EM, Wierman ME (xuño de 2002). "Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells". The Journal of Biological Chemistry 277 (23): 20702–10. PMID 11916967. doi:10.1074/jbc.M200545200. 
  68. Park JJ, Irvine RA, Buchanan G, Koh SS, Park JM, Tilley WD, Stallcup MR, Press MF, Coetzee GA (novembro de 2000). "Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor". Cancer Research 60 (21): 5946–9. PMID 11085509. 
  69. Yeh S, Hu YC, Rahman M, Lin HK, Hsu CL, Ting HJ, Kang HY, Chang C (outubro de 2000). "Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 97 (21): 11256–61. Bibcode:2000PNAS...9711256Y. PMC 17187. PMID 11016951. doi:10.1073/pnas.190353897. 
  70. Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME (xullo de 1997). "Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP". The Journal of Biological Chemistry 272 (28): 17485–94. PMID 9211894. doi:10.1074/jbc.272.28.17485. 
  71. Cifuentes E, Mataraza JM, Yoshida BA, Menon M, Sacks DB, Barrack ER, Reddy GP (xaneiro de 2004). "Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 101 (2): 464–9. Bibcode:2004PNAS..101..464C. PMC 327170. PMID 14695896. doi:10.1073/pnas.0307161101. 
  72. Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (abril de 2001). "Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation". The Journal of Biological Chemistry 276 (16): 13442–51. PMID 11278309. doi:10.1074/jbc.M006598200. 
  73. Lee DK, Duan HO, Chang C (marzo de 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". The Journal of Biological Chemistry 276 (13): 9978–84. PMID 11266437. doi:10.1074/jbc.M002285200. 
  74. Beauchemin AM, Gottlieb B, Beitel LK, Elhaji YA, Pinsky L, Trifiro MA (2001). "Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy". Brain Research Bulletin 56 (3–4): 285–97. PMID 11719263. doi:10.1016/S0361-9230(01)00583-4. 
  75. Kim J, Jia L, Stallcup MR, Coetzee GA (febreiro de 2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". Journal of Molecular Endocrinology 34 (1): 107–18. PMID 15691881. doi:10.1677/jme.1.01701. 
  76. Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (novembro de 1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". The Journal of Biological Chemistry 273 (48): 31853–9. PMID 9822653. doi:10.1074/jbc.273.48.31853. 
  77. 77,0 77,1 77,2 Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (xullo de 2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochemical and Biophysical Research Communications 306 (3): 660–5. PMID 12810069. doi:10.1016/S0006-291X(03)01021-0. 
  78. Aarnisalo P, Palvimo JJ, Jänne OA (marzo de 1998). "CREB-binding protein in androgen receptor-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America 95 (5): 2122–7. Bibcode:1998PNAS...95.2122A. PMC 19270. PMID 9482849. doi:10.1073/pnas.95.5.2122. 
  79. Reutens AT, Watanabe G, Albanese C, McPhaul MJ, Balk SP, Pestell RG (1998). "Cyclin D1 binds activating mutants of the androgen receptor". US Endocrine Society Meeting (P1–528). 
  80. Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z, Balk SP, Jänne OA, Palvimo JJ, Pestell RG (maio de 2001). "Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner". Molecular Endocrinology 15 (5): 797–811. PMID 11328859. doi:10.1210/mend.15.5.0641. 
  81. Petre-Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, Diehl JA, Knudsen KE (xaneiro de 2005). "A central domain of cyclin D1 mediates nuclear receptor corepressor activity". Oncogene 24 (3): 431–44. PMID 15558026. doi:10.1038/sj.onc.1208200. 
  82. Knudsen KE, Cavenee WK, Arden KC (maio de 1999). "D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability". Cancer Research 59 (10): 2297–301. PMID 10344732. 
  83. Lee DK, Duan HO, Chang C (marzo de 2000). "From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator". The Journal of Biological Chemistry 275 (13): 9308–13. PMID 10734072. doi:10.1074/jbc.275.13.9308. 
  84. Wu K, Katiyar S, Witkiewicz A, Li A, McCue P, Song LN, Tian L, Jin M, Pestell RG (abril 2009). "The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth". Cancer Research 69 (8): 3347–55. PMC 2669850. PMID 19351840. doi:10.1158/0008-5472.CAN-08-3821. 
  85. Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G, Kung HJ, Shih HM (decembro de 2004). "Negative modulation of androgen receptor transcriptional activity by Daxx". Molecular and Cellular Biology 24 (24): 10529–41. PMC 533990. PMID 15572661. doi:10.1128/MCB.24.24.10529-10541.2004. 
  86. Wafa LA, Cheng H, Rao MA, Nelson CC, Cox M, Hirst M, Sadowski I, Rennie PS (outubro de 2003). "Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system". The Biochemical Journal 375 (Pt 2): 373–83. PMC 1223690. PMID 12864730. doi:10.1042/BJ20030689. 
  87. Niki T, Takahashi-Niki K, Taira T, Iguchi-Ariga SM, Ariga H (febreiro de 2003). "DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex". Molecular Cancer Research 1 (4): 247–61. PMID 12612053. 
  88. Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E (outubro de 2004). "EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)" (PDF). International Journal of Cancer 112 (1): 78–86. PMID 15305378. doi:10.1002/ijc.20362. hdl:2158/395766. 
  89. Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (agosto de 2004). "The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells". Steroids 69 (8–9): 549–52. PMID 15288768. doi:10.1016/j.steroids.2004.05.011. hdl:2158/395763. 
  90. Li P, Lee H, Guo S, Unterman TG, Jenster G, Bai W (xaneiro de 2003). "AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR". Molecular and Cellular Biology 23 (1): 104–18. PMC 140652. PMID 12482965. doi:10.1128/MCB.23.1.104-118.2003. 
  91. Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, Zoghbi HY (setembro de 1996). "Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase". Human Molecular Genetics 5 (9): 1311–8. PMID 8872471. doi:10.1093/hmg/5.9.1311. 
  92. Nishimura K, Ting HJ, Harada Y, Tokizane T, Nonomura N, Kang HY, Chang HC, Yeh S, Miyamoto H, Shin M, Aozasa K, Okuyama A, Chang C (agosto de 2003). "Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator". Cancer Research 63 (16): 4888–94. PMID 12941811. 
  93. Rigas AC, Ozanne DM, Neal DE, Robson CN (novembro de 2003). "The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway". The Journal of Biological Chemistry 278 (46): 46087–93. PMID 12958311. doi:10.1074/jbc.M306219200. 
  94. Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C (xullo de 2004). "Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells". The Journal of Biological Chemistry 279 (31): 32444–52. PMID 15178691. doi:10.1074/jbc.M313963200. 
  95. 95,0 95,1 Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (xullo de 2002). "Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor". The Journal of Biological Chemistry 277 (29): 25904–13. PMID 11994312. doi:10.1074/jbc.M203423200. 
  96. Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E (marzo de 1992). "Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation". Biochemistry 31 (8): 2393–9. PMID 1540595. doi:10.1021/bi00123a026. 
  97. Nemoto T, Ohara-Nemoto Y, Ota M (setembro de 1992). "Association of the 90-kDa heat shock protein does not affect the ligand-binding ability of androgen receptor". The Journal of Steroid Biochemistry and Molecular Biology 42 (8): 803–12. PMID 1525041. doi:10.1016/0960-0760(92)90088-Z. 
  98. 98,0 98,1 Bai S, He B, Wilson EM (febreiro de 2005). "Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction". Molecular and Cellular Biology 25 (4): 1238–57. PMC 548016. PMID 15684378. doi:10.1128/MCB.25.4.1238-1257.2005. 
  99. Bai S, Wilson EM (marzo de 2008). "Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor". Molecular and Cellular Biology 28 (6): 1947–63. PMC 2268407. PMID 18212060. doi:10.1128/MCB.01672-07. 
  100. Wang Q, Sharma D, Ren Y, Fondell JD (novembro de 2002). "A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression". The Journal of Biological Chemistry 277 (45): 42852–8. PMID 12218053. doi:10.1074/jbc.M206061200. 
  101. Sharma M, Zarnegar M, Li X, Lim B, Sun Z (novembro de 2000). "Androgen receptor interacts with a novel MYST protein, HBO1". The Journal of Biological Chemistry 275 (45): 35200–8. PMID 10930412. doi:10.1074/jbc.M004838200. 
  102. Ueda T, Mawji NR, Bruchovsky N, Sadar MD (outubro de 2002). "Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells". The Journal of Biological Chemistry 277 (41): 38087–94. PMID 12163482. doi:10.1074/jbc.M203313200. 
  103. Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG (decembro de 1999). "The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1". Molecular and Cellular Biology 19 (12): 8383–92. PMC 84931. PMID 10567563. doi:10.1128/mcb.19.12.8383. 
  104. 104,0 104,1 Wang Q, Udayakumar TS, Vasaitis TS, Brodie AM, Fondell JD (abril de 2004). "Mechanistic relationship between androgen receptor polyglutamine tract truncation and androgen-dependent transcriptional hyperactivity in prostate cancer cells". The Journal of Biological Chemistry 279 (17): 17319–28. PMID 14966121. doi:10.1074/jbc.M400970200. 
  105. 105,0 105,1 105,2 He B, Wilson EM (marzo de 2003). "Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs". Molecular and Cellular Biology 23 (6): 2135–50. PMC 149467. PMID 12612084. doi:10.1128/MCB.23.6.2135-2150.2003. 
  106. Tan JA, Hall SH, Petrusz P, French FS (setembro de 2000). "Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator". Endocrinology 141 (9): 3440–50. PMID 10965917. doi:10.1210/endo.141.9.7680. 
  107. Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN (decembro de 2001). "Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer". British Journal of Cancer 85 (12): 1928–36. PMC 2364015. PMID 11747336. doi:10.1054/bjoc.2001.2179. 
  108. 108,0 108,1 108,2 He B, Minges JT, Lee LW, Wilson EM (marzo de 2002). "The FXXLF motif mediates androgen receptor-specific interactions with coregulators". The Journal of Biological Chemistry 277 (12): 10226–35. PMID 11779876. doi:10.1074/jbc.M111975200. 
  109. Alen P, Claessens F, Schoenmakers E, Swinnen JV, Verhoeven G, Rombauts W, Peeters B (xaneiro de 1999). "Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform". Molecular Endocrinology 13 (1): 117–28. PMID 9892017. doi:10.1210/mend.13.1.0214. 
  110. Yeh S, Chang C (maio de 1996). "Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells". Proceedings of the National Academy of Sciences of the United States of America 93 (11): 5517–21. Bibcode:1996PNAS...93.5517Y. PMC 39278. PMID 8643607. doi:10.1073/pnas.93.11.5517. 
  111. Miyamoto H, Yeh S, Wilding G, Chang C (xuño de 1998). "Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells". Proceedings of the National Academy of Sciences of the United States of America 95 (13): 7379–84. Bibcode:1998PNAS...95.7379M. PMC 22623. PMID 9636157. doi:10.1073/pnas.95.13.7379. 
  112. Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (May 1999). "From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells". Proceedings of the National Academy of Sciences of the United States of America 96 (10): 5458–63. Bibcode:1999PNAS...96.5458Y. PMC 21881. PMID 10318905. doi:10.1073/pnas.96.10.5458. 
  113. Zhou ZX, He B, Hall SH, Wilson EM, French FS (febreiro de 2002). "Domain interactions between coregulator ARA(70) and the androgen receptor (AR)". Molecular Endocrinology 16 (2): 287–300. PMID 11818501. doi:10.1210/mend.16.2.0765. 
  114. Gao T, Brantley K, Bolu E, McPhaul MJ (outubro de 1999). "RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays". Molecular Endocrinology 13 (10): 1645–56. PMID 10517667. doi:10.1210/mend.13.10.0352. 
  115. Goo YH, Na SY, Zhang H, Xu J, Hong S, Cheong J, Lee SK, Lee JW (febreiro de 2004). "Interactions between activating signal cointegrator-2 and the tumor suppressor retinoblastoma in androgen receptor transactivation". The Journal of Biological Chemistry 279 (8): 7131–5. PMID 14645241. doi:10.1074/jbc.M312563200. 
  116. Liao G, Chen LY, Zhang A, Godavarthy A, Xia F, Ghosh JC, Li H, Chen JD (febreiro de 2003). "Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT". The Journal of Biological Chemistry 278 (7): 5052–61. PMID 12441355. doi:10.1074/jbc.M206374200. 
  117. Dotzlaw H, Moehren U, Mink S, Cato AC, Iñiguez Lluhí JA, Baniahmad A (abril de 2002). "The amino terminus of the human AR is target for corepressor action and antihormone agonism". Molecular Endocrinology 16 (4): 661–73. PMID 11923464. doi:10.1210/me.16.4.661. 
  118. Fu M, Wang C, Reutens AT, Wang J, Angeletti RH, Siconolfi-Baez L, et al. (xullo 2000). "p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation". The Journal of Biological Chemistry 275 (27): 20853–60. PMID 10779504. doi:10.1074/jbc.M000660200. 
  119. Zhang Y, Fondell JD, Wang Q, Xia X, Cheng A, Lu ML, Hamburger AW (agosto de 2002). "Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1". Oncogene 21 (36): 5609–18. PMID 12165860. doi:10.1038/sj.onc.1205638. 
  120. Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z (maio de 2001). "Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6". The Journal of Biological Chemistry 276 (18): 15345–53. PMID 11278661. doi:10.1074/jbc.M010311200. 
  121. Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP (xaneiro de 2002). "AR and ER interaction with a p21-activated kinase (PAK6)". Molecular Endocrinology 16 (1): 85–99. PMID 11773441. doi:10.1210/mend.16.1.0753. 
  122. 122,0 122,1 Pero R, Lembo F, Palmieri EA, Vitiello C, Fedele M, Fusco A, Bruni CB, Chiariotti L (febreiro de 2002). "PATZ attenuates the RNF4-mediated enhancement of androgen receptor-dependent transcription". The Journal of Biological Chemistry 277 (5): 3280–5. PMID 11719514. doi:10.1074/jbc.M109491200. 
  123. Kotaja N, Aittomäki S, Silvennoinen O, Palvimo JJ, Jänne OA (decembro de 2000). "ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation". Molecular Endocrinology 14 (12): 1986–2000. PMID 11117529. doi:10.1210/mend.14.12.0569. 
  124. Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Jänne OA, Palvimo JJ (febreiro de 1999). "A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins". The Journal of Biological Chemistry 274 (6): 3700–4. PMID 9920921. doi:10.1074/jbc.274.6.3700. 
  125. Zhao Y, Goto K, Saitoh M, Yanase T, Nomura M, Okabe T, Takayanagi R, Nawata H (agosto de 2002). "Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor". The Journal of Biological Chemistry 277 (33): 30031–9. PMID 12039962. doi:10.1074/jbc.M203811200. 
  126. 126,0 126,1 Lin HK, Hu YC, Lee DK, Chang C (outubro de 2004). "Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells". Molecular Endocrinology 18 (10): 2409–23. PMID 15205473. doi:10.1210/me.2004-0117. 
  127. Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C (marzo de 2004). "Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells". Molecular and Cellular Biology 24 (5): 2202–13. PMC 350564. PMID 14966297. doi:10.1128/MCB.24.5.2202-2213.2004. 
  128. Rao MA, Cheng H, Quayle AN, Nishitani H, Nelson CC, Rennie PS (decembro de 2002). "RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor". The Journal of Biological Chemistry 277 (50): 48020–7. PMID 12361945. doi:10.1074/jbc.M209741200. 
  129. Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA (agosto de 2002). "Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity". Journal of Molecular Endocrinology 29 (1): 41–60. PMID 12200228. doi:10.1677/jme.0.0290041. 
  130. Lu J, Danielsen M (novembro de 1998). "Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein". The Journal of Biological Chemistry 273 (47): 31528–33. PMID 9813067. doi:10.1074/jbc.273.47.31528. 
  131. Yeh S, Miyamoto H, Nishimura K, Kang H, Ludlow J, Hsiao P, Wang C, Su C, Chang C (xullo de 1998). "Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells". Biochemical and Biophysical Research Communications 248 (2): 361–7. PMID 9675141. doi:10.1006/bbrc.1998.8974. 
  132. Miyamoto H, Rahman M, Takatera H, Kang HY, Yeh S, Chang HC, Nishimura K, Fujimoto N, Chang C (febreiro de 2002). "A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth". The Journal of Biological Chemistry 277 (7): 4609–17. PMID 11673464. doi:10.1074/jbc.M108312200. 
  133. Kang HY, Yeh S, Fujimoto N, Chang C (marzo de 1999). "Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor". The Journal of Biological Chemistry 274 (13): 8570–6. PMID 10085091. doi:10.1074/jbc.274.13.8570. 
  134. Moilanen AM, Poukka H, Karvonen U, Häkli M, Jänne OA, Palvimo JJ (setembro de 1998). "Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription". Molecular and Cellular Biology 18 (9): 5128–39. PMC 109098. PMID 9710597. doi:10.1128/mcb.18.9.5128. 
  135. Poukka H, Aarnisalo P, Santti H, Jänne OA, Palvimo JJ (xaneiro de 2000). "Coregulator small nuclear RING finger protein (SNURF) enhances Sp1- and steroid receptor-mediated transcription by different mechanisms". The Journal of Biological Chemistry 275 (1): 571–9. PMID 10617653. doi:10.1074/jbc.275.1.571. 
  136. Liu Y, Kim BO, Kao C, Jung C, Dalton JT, He JJ (maio de 2004). "Tip110, the human immunodeficiency virus type 1 (HIV-1) Tat-interacting protein of 110 kDa as a negative regulator of androgen receptor (AR) transcriptional activation". The Journal of Biological Chemistry 279 (21): 21766–73. PMID 15031286. doi:10.1074/jbc.M314321200. 
  137. Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D (xaneiro de 2002). "The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3". The Journal of Biological Chemistry 277 (2): 1240–8. PMID 11707452. doi:10.1074/jbc.M108855200. 
  138. Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (marzo de 2001). "SMAD3 represses androgen receptor-mediated transcription". Cancer Research 61 (5): 2112–8. PMID 11280774. 
  139. Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C (novembro de 2002). "Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4". The Journal of Biological Chemistry 277 (46): 43749–56. PMID 12226080. doi:10.1074/jbc.M205603200. 
  140. Gobinet J, Auzou G, Nicolas JC, Sultan C, Jalaguier S (decembro de 2001). "Characterization of the interaction between androgen receptor and a new transcriptional inhibitor, SHP". Biochemistry 40 (50): 15369–77. PMID 11735420. doi:10.1021/bi011384o. 
  141. Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M (outubro de 2004). "Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence". Cancer Research 64 (19): 7156–68. PMID 15466214. doi:10.1158/0008-5472.CAN-04-1121. 
  142. Powell SM, Christiaens V, Voulgaraki D, Waxman J, Claessens F, Bevan CL (marzo de 2004). "Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate". Endocrine-Related Cancer 11 (1): 117–30. PMID 15027889. doi:10.1677/erc.0.0110117. 
  143. Yuan X, Lu ML, Li T, Balk SP (decembro de 2001). "SRY interacts with and negatively regulates androgen receptor transcriptional activity". The Journal of Biological Chemistry 276 (49): 46647–54. PMID 11585838. doi:10.1074/jbc.M108404200. 
  144. Matsuda T, Junicho A, Yamamoto T, Kishi H, Korkmaz K, Saatcioglu F, Fuse H, Muraguchi A (abril de 2001). "Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells". Biochemical and Biophysical Research Communications 283 (1): 179–87. PMID 11322786. doi:10.1006/bbrc.2001.4758. 
  145. Ueda T, Bruchovsky N, Sadar MD (marzo de 2002). "Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways". The Journal of Biological Chemistry 277 (9): 7076–85. PMID 11751884. doi:10.1074/jbc.M108255200. 
  146. Ting HJ, Yeh S, Nishimura K, Chang C (xaneiro de 2002). "Supervillin associates with androgen receptor and modulates its transcriptional activity". Proceedings of the National Academy of Sciences of the United States of America 99 (2): 661–6. Bibcode:2002PNAS...99..661T. PMC 117362. PMID 11792840. doi:10.1073/pnas.022469899. 
  147. Mu X, Chang C (outubro de 2003). "TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3". The Prostate 57 (2): 129–33. PMID 12949936. doi:10.1002/pros.10282. 
  148. Lee YF, Shyr CR, Thin TH, Lin WJ, Chang C (decembro de 1999). "Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily". Proceedings of the National Academy of Sciences of the United States of America 96 (26): 14724–9. Bibcode:1999PNAS...9614724L. PMC 24715. PMID 10611280. doi:10.1073/pnas.96.26.14724. 
  149. Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y, Chang C (maio de 2002). "Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator". The Journal of Biological Chemistry 277 (18): 15426–31. PMID 11856738. doi:10.1074/jbc.M111218200. 
  150. Hsiao PW, Chang C (agosto de 1999). "Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells". The Journal of Biological Chemistry 274 (32): 22373–9. PMID 10428808. doi:10.1074/jbc.274.32.22373. 
  151. Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, Nonomura K, Hatakeyama S (maio de 2008). "TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells". Cancer Research 68 (9): 3486–94. PMID 18451177. doi:10.1158/0008-5472.CAN-07-6059. 
  152. Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Jänne OA (xullo de 1999). "Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription". The Journal of Biological Chemistry 274 (27): 19441–6. PMID 10383460. doi:10.1074/jbc.274.27.19441. 
  153. Müller JM, Isele U, Metzger E, Rempel A, Moser M, Pscherer A, Breyer T, Holubarsch C, Buettner R, Schüle R (febreiro de 2000). "FHL2, a novel tissue-specific coactivator of the androgen receptor". The EMBO Journal 19 (3): 359–69. PMC 305573. PMID 10654935. doi:10.1093/emboj/19.3.359. 
  154. Cheng S, Brzostek S, Lee SR, Hollenberg AN, Balk SP (xullo de 2002). "Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor". Molecular Endocrinology 16 (7): 1492–501. PMID 12089345. doi:10.1210/mend.16.7.0870. 
  155. Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E, Balk SP, Hollenberg AN (febreiro de 2005). "The androgen receptor recruits nuclear receptor CoRepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists". The Journal of Biological Chemistry 280 (8): 6511–9. PMID 15598662. doi:10.1074/jbc.M408972200. 
  156. Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ (febreiro 2002). "Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus". Molecular Biology of the Cell 13 (2): 670–82. PMC 65658. PMID 11854421. doi:10.1091/mbc.01-10-0513. 
  157. Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z (novembro de 2003). "hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci". The EMBO Journal 22 (22): 6101–14. PMC 275443. PMID 14609956. doi:10.1093/emboj/cdg585. 

Véxase tamén

editar

Outros artigos

editar

Ligazóns externas

editar