Probabilidade

A probabilidade é a rama das matemáticas que achega descricións numéricas da facilidade de que ocorra un suceso, ou como de posible é que unha proposición sexa verdadeira. A probabilidade dun suceso é un número entre 0 e 1, onde, falando rápido, 0 indica a imposibilidade do suceso e 1 indica a certeza.[1][2][3] Cando maior é a probabilidade dun suceso, é maior a facilidade de que ocorra.

Christiaan Huygens probablemente publicou o primeiro libro sobre probabilidade.

A teoría da probabilidade úsase cumpridamente en áreas como a estatística, a física, a matemática, a ciencia e mais a filosofía para tirar conclusións sobre a probabilidade de sucesos potenciais e a mecánica subxacente de sistemas complexos.

EtimoloxíaEditar

A palabra probabilidade deriva do latín probabilitas, que tamén pode significar "probidade", medida da autoridade dunha testemuña nun caso legal en Europa, ás veces relacionada coa nobreza da testemuña. Nun sentido difire moito do significado moderno de probabilidade, que é unha medida do peso da evidencia empírica.[4]

HistoriaEditar

O estudo da probabilidade xorde do desexo do ser humano por coñecer con certeza os sucesos que acontecerán no futuro. Por iso a través da historia desenvolveu diferentes enfoques para ter un concepto da probabilidade e determinar os seus valores.

A idea de probabilidade está intimamente ligada á idea do azar e axúdanos a comprender as nosas probabilidades de gañar un xogo de azar ou analizar as enquisas. Pierre Simon Laplace afirmou: "É notable que unha ciencia que comezou con consideracións sobre os xogos de azar chegase a ser o obxecto máis importante do coñecemento humano". Comprender e estudar o azar é indispensable porque a probabilidade é un soporte necesario para tomar decisións en calquera ámbito.[5]

As primeiras formas coñecidas de probabilidade e estatística desenvolvéronas os matemáticos do próximo oriente estudando criptografía entre os séculos VIII e XIII. Al-Khalil (717–786) escribiu o Libro das mensaxes criptográficas, que contén os primeiros usos de permutacións e combinacións para listar todas as palabras árabes con e sen vogais. Al-Kindi (801–873) empregou por primeira vez a inferencia estatística nos seus traballos sobre criptoanálise e análise de frecuencias. Unha importante contribución de Ibn Adlan (1187–1268) foi o tamñao da mostra para empregar a análise de frecuencias.[6]

Á parte dalgunhas consideracións elementais feitas por Girolamo Cardano no século XVI, a doutrina do cálculo de probabilidades data da correspondencia entre Pierre de Fermat e Blaise Pascal (1654). Christiaan Huygens (1657) deulle o tratamento científico coñecido máis temperán ao concepto.[7] e Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli e Doctrine of Chances (1718) de Abraham de Moivre trataron o tema como unha póla das matemáticas.[8].[9]

A teoría dos erros pode considerarse que comezou con Opera Miscellanea (póstumo, 1722) de Roger Cotes, mais unha memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicou por primeira vez a teoría para a discusión de erros de observación. A reimpresión (1757) desta memoria expón os axiomas de que os erros positivos e negativos son igualmente probables, e que hai certos límites asignables dentro dos cales se supón que caen todos os erros; discútense os erros continuos e dáse unha curva da probabilidade.

Pierre Simon Laplace (1774) fixo o primeiro intento para deducir unha regra para a combinación de observacións a partir dos principios da teoría das probabilidades. Representou a lei da probabilidade de erro cunha curva  , sendo   calquera erro e   a súa probabilidade, e expuxo tres propiedades desta curva:

  1. é simétrica respecto ao eixe  ;
  2. o eixe   é unha asíntota, sendo a probabilidade do erro   igual a 0;
  3. a superficie encerrada é 1, facendo certa a existencia dun erro.

Deduciu tamén unha fórmula para a media de tres observación e obtivo en 1781 unha fórmula para a lei de facilidade de erro, termo debido a Lagrange (1774), mais esta fórmula levaba a ecuacións inmanexables. Daniel Bernoulli (1778) introduciu o principio do máximo produto das probabilidades dun sistema de erros concorrentes.

O método de mínimos cadrados débese a Adrien-Marie Legendre (1805),[10] que o introduciu en Nouvelles méthodes pour la détermination des orbites des comètes (Novos métodos para a determinación das órbitas dos cometas). Ignorando a contribución de Legendre, un escritor irlandés-estadounidense, Robert Adrain, editor de "The Analyst" (1808), deduciu a lei de facilidade de erro,

 

sendo   e   constantes que dependen da precisión da observación. Expuxo dúas demostracións, sendo a segunda esencialmente a mesma de John Herschel (1850). Gauss expuxo a primeira demostración que parece que se coñeceu en Europa (a terceira despois da de Adrain) en 1809. Demostracións adicionais foron expostas por aplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856) e Morgan Crofton (1870). Outras personaxes que contribuíron foron Ellis (1844), De Morgan (1864), Glaisher (1872) e Giovanni Schiaparelli (1875). A fórmula de Peters (1856) para  , o erro probable dunha única observación tamén e moi coñecida.

No século XIX, os autores da teoría xeral incluían a Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, e Karl Pearson. Augustus De Morgan e George Boole melloraron a exposición da teoría.

En 1906, Andrei Markov introduciu[11] o concepto de cadeas de Markov, que tiveron un importante papel na teoría de procesos estocásticos e as súas aplicacións. En 1930, Kolmogorov desenvolveu a base axiomática da probabilidade empregando a teoría da medida.[12] Na parte xeométrica foron influentes os colaboradores de The Educational Times (Miller, Crofton, McColl, Wolstenholme, Watson e Artemas Martin).[13]

TeoríaEditar

Artigo principal: Teoría da probabilidade.

A probabilidade constitúe un importante parámetro na determinación das diversas casualidades obtidas tras unha serie de eventos esperados dentro dun rango estatístico. Existen diversas formas como método abstracto, como a teoría Dempster-Shafer e a teoría da relatividade numérica.

A probabilidade dun suceso denótase coa letra p e exprésase en termos dunha fracción, polo que o valor de p cae entre 0 e 1. Por outra banda, a probabilidade de que un suceso "non ocorra" equivale a 1 menos o valor de p e denótase habitualmente coa letra q

 

Os métodos máis usuais para calcular as probabilidades son a regra da adición, a regra do produto e a distribución binomial.

Regra da adiciónEditar

A regra da adición establece que a probabilidade de que ocorra un suceso en particular é igual á suma das probabilidades individuais se os sucesos son mutuamente excluínes, é dicir, non poden ocorrer ao mesmo tempo.

Por un lado, se  , é dicir que son mutuamente excluíntes, entón:  

Por outra banda, se  , é dicir que non son mutuamente excluíntes, enton:   sendo   probabilidade de que ocorra o suceso  ,   probabilidade de que ocorra o suceso  , e   probabilidade de que ocorran de xeito simultáneo os sucesos   e  .

Outra forma de velo é expresar a probabilidade de sucesos mutuamente non excluíntes mediante o sumatorio das probabilidades dun suceso determinado en función doutros sucesos:


 

Regra do produtoEditar

A regra do produto establece que a probabilidade de que ocorran dous ou máis sucesos estatisticamente independentes é igual ao produto das súas probabilidades individuais:   se   e   son independentes.[14]  se   e   non son independentes.

Regra de LaplaceEditar

A regra de Laplace establece que no caso de que os experimentos dean lugar a sucesos equiprobables, é dicir, que todos teñan a mesma probabilidade, a probabilidade de que ocorra un suceso   calcúlase:  

Distribución binomialEditar

Nunha serie de experimentos repetidos de xeito independente un número de veces n, e nos que só hai dúas posibilidades de resultado (éxito/fracaso), a distribución da variable X que conta o número de éxitos segue unha distribución binomial. A probabilidade de que ocorran m éxitos nun experimento repetido n veces é:   onde   é o número total de combinacións posibles de m elementos nun conxunto de n elementos.

Resumo de probabilidadesEditar

Suceso Probabilidade
A  
non A  
A ou B  
A e B  
A dado B  

AplicaciónsEditar

Dúas aplicacións principais da teoría da probabilidade no día a día na análise de riscos e no comercio dos mercados de materias primas. Os gobernos normalmente aplican métodos probabilísticos en regulación ambiental onde se lles chama "análise de vías de dispersión", e con frecuencia miden o benestar usando métodos que son estocásticos por natureza, e escollen que proxectos emprender baseándose en análises estatísticos do seu probable efecto na poboación como un conxunto. Non é correcto dicir que a estatística está incluída no propio modelo, xa que as análises de risco adoitan ser para unha única vez e polo tanto requiren máis modelos de probabilidade fundamentais. Unha lei de números pequenos tende a aplicarse a todas aquelas escollas e percepcións do efecto destas escollas, o que fai da medidas probabilísticas un tema político.

NotasEditar

  1. Falando estritamente, unha probabilidade de 0 indica que un suceso case nunca ten lugar, mentre que a probabilidade de 1 indica que o suceso case seguramente ocorre. É unha distinción importante se o espazo da mostra é infinito.
  2. "Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8
  3. William Feller, An Introduction to Probability Theory and Its Applications, (Vol 1), 3rd Ed, (1968), Wiley, ISBN 0-471-25708-7
  4. Hacking, I. (2006) The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference, Cambridge University Press, ISBN 978-0-521-68557-3
  5. "Historia de la Probabilidad". estadisticaparatodos.es. Consultado o 12 de xnairo de 2011. 
  6. Broemeling, Lyle D. (1 de novembro de 2011). "An Account of Early Statistical Inference in Arab Cryptology". The American Statistician 65 (4): 255–257. doi:10.1198/tas.2011.10191. 
  7. Abrams, William. "A Brief History of Probability". Second Moment. Consultado o 2008-05-23. 
  8. Hacking, Ian (1975). The Emergence of Probability. 
  9. Ivancevic, Vladimir G.; Ivancevic, Tijana T. (2008). Quantum leap : from Dirac and Feynman, across the universe, to human body and mind. Singapur; Hackensack, NJ: World Scientific. p. 16. ISBN 978-981-281-927-7. 
  10. Seneta, Eugene William. ""Adrien-Marie Legendre" (version 9)". StatProb: The Encyclopedia Sponsored by Statistics and Probability Societies. Arquivado dende o orixinal o 3 de febreiro de 2016. Consultado o 27 de xaneiro de 2016. 
  11. Weber, Richard. "Markov Chains" (PDF). Statistical Laboratory. University of Cambridge. 
  12. Vitanyi, Paul M.B. (1988). "Andrei Nikolaevich Kolmogorov". CWI Quarterly (1): 3–18. Consultado o 27 de xaneiro de 2016. 
  13. Wilcox, Rand R. Understanding and applying basic statistical methods using R. Hoboken, New Jersey. ISBN 978-1-119-06140-3. OCLC 949759319. 
  14. Olofsson (2005) p. 35.

Véxase taménEditar

BibliografíaEditar

  • Kallenberg, O. (2005) Probabilistic Symmetries and Invariance Principles. Springer-Verlag, Nova York. 510 pp. ISBN 0-387-25115-4
  • Kallenberg, O. (2002) Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. 650 pp. ISBN 0-387-95313-2
  • Olofsson, Peter (2005) Probability, Statistics, and Stochastic Processes, Wiley-Interscience. 504 pp ISBN 0-471-67969-0.

Ligazóns externasEditar