Ollo

órgano dos animais que detecta a luz

O ollo (Gl-ollo.ogg pronunciación ), (do latín ocŭlus), ou globo ocular é o órgano que detecta a luz, sendo a base do sentido da vista. Componse dun sistema sensible aos cambios de luz, capaz de transformar estes en impulsos eléctricos. Os ollos máis sinxelos non fan máis que detectar se os arredores están iluminados ou escuros. Os máis complexos serven para proporcionar o sentido da vista.

Ollo humano
Ollos compostos dunha libeliña
Ollos compostos dunha mosca.

As partes do ollo son esenciais para a existencia humana porque grazas a elas captamos, percibimos e atopamos o que se chama as imaxes percibidas por este sistema.

Os ollos compostos atópanse nos artrópodos (insectos e animais semellantes) e están formados por moitas facetas simples que dan unha imaxe "pixelada", ou sexa, en mosaico (non imaxes múltiples, como a miúdo crese).

Na maioría dos vertebrados e nalgúns moluscos, o ollo funciona proxectando imaxes a unha retina sensible á luz, onde se detecta e transmítese un sinal correspondente a través do nervio óptico. O ollo polo xeral é aproximadamente esférico, cheo dunha substancia transparente xelatinosa chamada humor vítreo, que enche o espazo comprendido entre a retina e o cristalino, o humor transparente, atópase no espazo existente entre o cristalino e a córnea transparente, cuxa función é a de controlar o estado óptimo da presión intraocular, cun lente de enfoque chamado cristalino e, a miúdo, un músculo chamado iris que regula a cantidade de luz que entra e lle dá cor aos ollos.

Para que os raios de luz se poidan enfocar débense refractar. A cantidade de refracción que cómpre depende da distancia do obxecto que se ve. Un obxecto distante requirirá menos refracción que un máis próximo. A maior parte da refracción acontece na córnea, que ten unha curvatura fixa. O resto da refracción requirida dáse no cristalino. Ao avellentar, o ser humano vai perdendo esta capacidade de axustar o enfoque, deficiencia coñecida como presbicia ou vista cansa. Os ollos máis simples non fan máis que detectar se as zonas ao seu redor están iluminadas ou escuras. Os máis complexos serven para proporcionar o sentido da visión.

Visión xeral editar

 
Ollo de bisonte europeo
 
Ollo humano

Os ollos complexos distinguen formas e cores. O campo visual de moitos organismos, especialmente o dos depredadores, implican grandes áreas de visión binocular para a percepción de profundidade. Noutros organismos, especialmente nos animais de presa, os ollos están situados para maximizar o campo de visión, como en coellos e cabalos, que teñen visión monocular.

Os primeiros protoollos evolucionaron entre os animais fai 600 millóns de anos aproximadamente na época da explosión cámbrica.[1] O último devanceiro común dos animais posuía o conxunto de ferramentas bioquímicas necesarias para a visión, e ollos máis avanzados evolucionaron no 96% das especies animais en seis dos 35[n. 1] filos principais.[2] Na maioría dos vertebrados e nalgúns moluscos, o ollo permite que a luz entre e proxéctese sobre unha capa sensible á luz de células coñecida como retina. Os conos (para a cor) e os bastóns (para os contrastes con pouca luz) da retina detectan e converten a luz en sinais neuronais que se transmiten ao cerebro a través do nervio óptico para producir a visión. Estes ollos adoitan ser esferoides, están recheos de transparente xelatinoso humor vítreo, posúen unha lente de enfoque e, a miúdo, un iris. Os músculos que rodean o iris modifican o tamaño da pupila, regulando a cantidade de luz que entra no ollo.[3] e reducen as aberracións cando hai suficiente luz.[4] Os ollos da maioría dos cefalópodos, peixes, anfibios e cobras teñen lentes de forma fixa, e o enfoque conséguese telescópicamente, de forma similar á dunha cámara fotográfica.[5]

Os ollos compostos dos artrópodos están formados por moitas facetas simples que, dependendo dos detalles anatómicos, poden dar unha soa imaxe pixelada ou múltiples imaxes por ollo. Cada sensor ten a súa propia lente e célula(s) fotosensible(s). Algúns ollos teñen ata 28.000 sensores deste tipo dispostos hexagonalmente, o que pode dar un campo de visión completo de 360°. Os ollos compostos son moi sensibles ao movemento. Algúns artrópodos, entre eles moitos estrepsípteros, teñen ollos compostos dunhas poucas facetas, cada unha cunha retina capaz de crear unha imaxe. Con cada ollo producindo unha imaxe diferente, no cerebro prodúcese unha imaxe fusionada de alta resolución.

 
Os ollos dos camaróns mantis (aquí Odontodactylus scyllarus) considéranse os máis complexos de todo o reino animal

Ao posuír unha detallada visión hiperespectral da cor, a langosta mantis ten o sistema de visión da cor máis complexa do mundo.[6] Os trilobites, xa extintos, tiñan ollos compostos únicos. Os cristais transparentes de calcita formaban as lentes dos seus ollos. Diferéncianse nisto da maioría dos demais artrópodos, que teñen ollos brandos. O número de lentes nun ollo deste tipo variaba moito; algúns trilobites só tiñan unha, mentres que outros tiñan miles de lentes por ollo.

A diferenza dos ollos compostos, os ollos simples teñen unha soa lente. As arañas saltadoras teñen un par de grandes ollos simples cun estreito campo de visión, aumentado por un conxunto de ollos máis pequenos para a visión periférica. Algunhas larvas de insectos, como as eirugas, teñen un tipo de ollo simple (stemmata) que normalmente só proporciona unha imaxe aproximada, pero (como nas larvas da mosca serra) pode posuír poderes de resolución de 4 graos de arco, ser sensible á polarización e capaz de aumentar a súa sensibilidade absoluta pola noite nun factor de 1.000 ou máis.[7] Os ocelos, uns dos ollos máis simples, atópanse en animais como algúns caracois. Teñen células fotosensibles pero non lentes nin outros medios para proxectar unha imaxe sobre esas células. Poden distinguir entre luz e escuridade, pero nada máis, o que lles permite evitar a luz solar directa. Nos organismos que viven preto das augas profundas, os ollos compostos están adaptados para ver a luz infravermella producida polas fumarolas quentes, o que lles permite evitar ser fervidos vivos.[8]

Tipos editar

Existen dez disposicións diferentes dos ollos; de feito, todos os métodos tecnolóxicos de captura dunha imaxe óptica utilizados habitualmente polos seres humanos, coas excepcións do zoom e das lentes de Fresnel, danse na natureza.[2] Os tipos de ollos poden clasificarse en "ollos simples", cunha superficie fotorreceptora cóncava, e "ollos compostos", que comprenden varias lentes individuais dispostas sobre unha superficie convexa.[2] "Simple" non implica un nivel reducido de complexidade ou agudeza. De feito, calquera tipo de ollo pode adaptarse a case calquera comportamento ou contorna. As únicas limitacións específicas dos tipos de ollo son as da resolución: a física dos ollos compostos impídelles alcanzar unha resolución superior a 1°. Ademais, os ollos de superposición poden alcanzar unha maior sensibilidade que os ollo de aposición, polo que son máis adecuados para criaturas que viven na escuridade.[2] Os ollos tamén se dividen en dous grupos en función da construción celular dos seus fotorreceptores: as células fotorreceptoras son ciliadas (como nos vertebrados) ou rabdoméricas. Estes dous grupos non son monofiléticos; os cnidarios tamén posúen células ciliadas,[9] e algúns gasterópodos[10] e os anélidos posúen ambos tipos de células.[11]

Algúns organismos teñen células fotosensibles que o único que fan é detectar se a contorna é claro ou escuro, o cal é suficiente para o arrastre do ritmo circadiano. Non se consideran ollos porque carecen de estrutura suficiente para ser considerados un órgano, e non producen unha imaxe.[12]

Ollos non compostos editar

Os ollos simples son bastante ubicuos, e os ollos con lentes evolucionaron polo menos sete veces en vertebrados, cefalópodos, anélidos, crustáceos e cubozoos.[13][Fallou a verificación]

Ollos simples editar

Os ollos simples, tamén coñecidos como ocelos, son puntos oculares que poden estar encaixados nunha fosa para reducir os ángulos da luz que entra e incide no punto ocular, para permitir ao organismo deducir o ángulo da luz entrante[2] Atopados en aproximadamente o 85% dos phyla, estas formas básicas foron probablemente as precursoras de tipos máis avanzados de "ollos simples". Son pequenos, comprenden ata unhas 100 células que cobren uns 100 µm.[2] A direccionalidade pode mellorarse reducindo o tamaño da abertura, incorporando unha capa reflectora detrás das células receptoras, ou enchendo a fosa cun material refráctil.[2]

As víboras de fosetas desenvolveron fosetas que funcionan como ollos ao detectar a radiación infravermella térmica, ademais dos seus ollos de lonxitude de onda óptica como os doutros vertebrados. Con todo, os órganos das fosas están dotados de receptores bastante diferentes dos fotorreceptores, concretamente un canle potencial do receptor transitorio específico (canles TRP) chamado TRPV1. A principal diferenza é que os fotorreceptores son receptores acoplados a proteínas G pero os TRP son canles iónicos.

Funcións do ollo editar

O ollo recibe os estímulos dos raios da luz procedentes da contorna e transfórmanos en impulsos nerviosos. Estes impulsos chegan ata o centro cerebral da visión, onde se descodifican e convértense en imaxes. A vista é un dos cinco sentidos que nos permiten comprender o mundo que nos rodea e desenvolvernos nel.

Estrutura do ollo editar

 
1: cámara posterior, 2: ora serrata, 3: músculo ciliar, 4: ligamento suspensorio do lente, 5: canle de Schlemm, 6: pupila, 7: cámara anterior, 8: córnea, 9: iris, 10: córtex do cristalino, 11: núcleo do cristalino, 12: corpo ciliar, 13: conxuntiva, 14: músculo oblicuo inferior, 15: músculo recto inferior, 16: músculo recto medial, 17: arterias e veas retinianas, 18: papila (punto cego), 19: duramadre, 20: arteria central retiniana, 21: vea central retiniana, 22: nervio óptico, 23: vea vorticosa, 24: conjuntiva bulbar, 25: mácula, 26: fóvea, 27: esclerótica, 28: coroide, 29: músculo recto superior, 30: retina.

O órgano da visión está composto polas pálpebras, os globos oculares, o aparello lagrimal e os músculos oculares externos. A visión binocular, coa participación de ambos os ollos, permite apreciar as imaxes en tres dimensións. O globo ocular mide uns 25 mm de diámetro e mantense na súa posición grazas aos músculos oculares. Está envolvido por unha membrana composta de varias capas.

A capa exterior, chamada esclerótica (27), é espesa, resistente e de cor branca. Recobre a capa intermedia, a coroide (28), que contén abondosos vasos sanguíneos. A capa interna chámase retina (30), e nela atópanse as células sensibles á luz: os bastóns e os conos. A parte anterior do globo ocular está cuberta pola córnea (8), unha membrana transparente e resistente que non posúe vasos sanguíneos.

Ao redor da córnea está a conxuntiva (4). Por detrás da córnea áchase a cámara anterior, limitada polo iris (9) e a pupila (18). Detrás da pupila atópase o cristalino, o corpo ciliar e a cámara posterior. As dúas cámaras están cheas dun líquido, o humor acuoso, que por unha banda mantén a tensión do interior do ollo e, por outro, humedece o cristalino e garante a súa nutrición. O iris está formado por unha fina rede de fibras conxuntivas, ou estroma, provista de numerosos vasos sanguíneos e dos músculos que controlan a dilatación e a contracción da pupila.

A cor do iris depende da transparencia do estroma e da cantidade de pigmento que contén. Cando o pigmento é escaso, os ollos son azuis, mentres que cando hai unha cantidade maior aprécianse matices verdes ou castaños.

O pigmento fórmase durante os primeiros meses de vida, polo que todos os recentemente nados teñen os ollos de cor azul agrisada. A cor definitiva establécese aos dous ou tres meses de vida. Senón hai pigmentación, os ollos parecen vermellos: é o caso dos albinos.

 
Cando o pigmento é escaso, os ollos son dunha cor azulada; se hai unha maior cantidade aprécianse matices verdosos ou castaños

O cristalino, situado xusto detrás da pupila, está sostido por unhas fibras conxuntivas moi finas que á súa vez están unidas ao músculo constritor do corpo ciliar. O cristalino fórmase ao longo da terceira ou cuarta semana do embarazo. É brando e elástico nos nenos, pero se endurece co paso dos anos.

O cristalino medra durante toda a vida: nun individuo de 70 anos é case tres veces maior que nun bebé. Detrás do cristalino atópase o humor vítreo, unha masa xelatinosa, abrancazada e transparente que ocupa a maior parte do interior do ollo. Esta masa está rodeada pola retina, que é a túnica máis interna do ollo. A retina, sensible aos impulsos luminosos, está conectada coas fibras do nervio óptico que se prolonga cara ao cerebro.

A zona que rodea o nervio óptico é a papila óptica, unha área que non contén células sensoriais e constitúe o denominado punto cego. Sobre a superficie da retina, no eixo anteroposterior do ollo, hai unha depresión: a mácula lútea ou amarela, que é a zona con maior agudeza visual. O ollo ve a luz visible que vai desde 400 milimicras a 750 milimicras, aproximadamente 3x107 Hz (3 por 10 elevado a 7 Hz) de frecuencia de ancho de banda.

Funcionamento do ollo editar

 
Enfoque da luz dun obxecto distante e a luz dun obxecto preto do ollo

Pupila editar

Artigo principal: Pupila.

A pupila é a parte central do iris. Trátase dunha abertura dilatable e contráctil de cor negra coa función de regular a iluminación que lle chega á retina, na parte posterior do ollo.

A pupila é o diafragma do ollo. Os músculos do músculo ciliar que teñen forma circular e de radio, ábrena ou péchana en función da luminosidade.

 
Contracción da pupila
 
Pupila contraída
 
Pupila dilatada

Córnea e cristalino editar

Artigos principais: Córnea e Cristalino.

A córnea é unha importante porcion anatomica do ollo e o cristalino é un compoñente do ollo con forma viconvexa; constitúen o obxectivo do ollo. Cando un raio de luz pasa dunha substancia transparente a outra, a súa traxectoria desvíase: este fenómeno coñécese co nome de refracción. A luz se refracta no cristalino e proxéctase sobre a retina. O cristalino regula a distancia curvándose máis ou menos. Se o cristalino é opaco, a retina transmite unha imaxe borrosa. Esta patoloxía é coñecida como "cataratas".

Retina editar

Artigo principal: Retina.

Na retina están as células visuais, polo que se pode comparar a unha película fotosensible. A luz, é dicir, a imaxe que percibimos, transfórmase alí en impulsos eléctricos que o nervio óptico transmite ao cerebro. Os nervios ópticos da zona nasal de ámbolos dous ollos entrecrúzanse antes de entrar no encéfalo, formando o quiasma óptico, en cambio a zona temporal non se cruza, deixando nun lado do cerebro o sector nasal dun ollo e o temporal do outro. Logo prolónganse polas vías visuais cara á zona media do cerebro e atravesando o tecido cerebral, alcanzan os centros visuais dos lóbulos occipitales. Ignórase que ocorre con exactitude despois, pero os impulsos eléctricos transfórmanse en imaxes. A imaxe chega investida á retina, pero o cerebro rectifícaa e podemos percibila na súa posición orixinal.

Conos e bastóns editar

As células sensoriais da retina reaccionan de forma distinta á luz e as cores. Os bastóns actívanse na escuridade, e só permiten distinguir o negro, o branco e os distintos grises. Os conos, en cambio funcionan de día e en ambientes iluminados, e fan posible a visión nas cores.

En realidade hai tres tipos de conos, adaptados a cada un ás cores azul, vermello e verde; os cales interaccionan mezclandose para formar o espectro completo de luz visible. O pigmento dos conos é unha substancia coloreada do retinol. Os conos están concentrados no centro da retina mentres que a frecuencia dos bastóns aumenta a medida que nos afastamos da mácula lutea cara á periferia. Cada Cono (célula) está conectado individualmente co centro visual do cerebro, o que na práctica permite distinguir a unha distancia de 10 metros dous puntos luminosos separados por só un milímetro.

Outras partes do ollo editar

 
Cirurxía ocular.
 
Musculatura ocular.

Musculatura extrínseca editar

Principais defectos e patoloxías do ollo editar

Miopía editar

Artigo principal: Miopía.

A miopía é a dificultade para ver de lonxe, xeralmente débese a un diámetro anteroposterior do ollo maior do normal a unha converxencia excesiva do cristalino ou a unha refracción demasiado forte da córnea. En todos os casos, as imaxes proxéctanse por encima da retina e transmítense de forma borrosa.

Hipermetropía editar

Artigo principal: Hipermetropía.

A Hipermetropía xeralmente congénita, débese a un diámetro anteroposterior do ollo menor do normal, polo que as imaxes proxéctanse por detrás da retina. Non esta relacionada coa distancia ou proximidade do obxecto observado. Os nenos hipermétropes intentan ver mellor entornando os ollos co que sobrecargan os músculos que controlan a forma do cristalino. Por iso adoitan ter a vista cansa dores de cabeza e dificultades para concentrarse.

Presbicia editar

Artigo principal: Presbicia.

A presbicia maniféstase en avanzada idade, cando xa resulta difícil ver de cerca e para poder ler o periódico hai que afastalo dos ollos. Este problema débese á perdida de elasticidade do cristalino. Para garantir unha boa visión de cerca, o cristalino debe contraerse: cando xa non pode facelo, a visión próxima faise borrosa con todo a visión de lonxe segue sendo boa. Prodúcese máis ou menos a partir dos 40 anos de idade.

Daltonismo editar

Artigo principal: Daltonismo.

O daltonismo é un defecto xenético polo cal hai unha falta de conos na retina, o cal provoca unha dificultade para distinguir o vermello e o verde, aínda que hai casos en que tamén é difícil diferenciar as demais cores. O daltonismo, moito máis corrente no home que na muller, pode ser hereditario. Non adoita causar outros trastornos, aínda que pode constituír un problema nalgunhas profesións que esixen unha correcta visión das cores.

Conxuntivite editar

Artigo principal: Conxuntivite.

A conxuntivite é unha inflamación da conxuntiva, que se irrita e adquire unha cor avermellada en vez do branco habitual. Tense proídos no ollo e a sensación que se meteu po dentro. Tamén pode producirse pus como as secreciones coagulan durante a noite, pola mañá resulta difícil abrir as pálpebras. A conxuntivite é unha enfermidade infecciosa ou alérxica moi corrente.

Catarata editar

Artigo principal: Catarata.

A catarata corresponde a unha opacificación do cristalino e é unha enfermidade bastante frecuente nas persoas maiores. Dado que o cristalino vólvese opaco progresivamente pérdese visión. Moitas veces descoñécese as causas da enfermidade pero pode aparecer en casos de diabetes ou tras unha infección.

Glaucoma editar

Artigo principal: Glaucoma.

O glaucoma é unha afección caracterizada por unha acumulación de líquido no interior do ollo. Dentro do ollo hai unha produción constante de humor acuoso, pero este líquido evacúase na mesma produción. Se a canle por onde se drena o humor acuoso se obstrúe, o líquido non se elimina e a presión intraocular aumenta en exceso. O glaucoma é unha afección grave que se non se cura a tempo, pode xerar a perdida da visión. Hai moitos medicamentos contraindicados cando se padece glaucoma. O incumprimento desta regra pode provocar unha cegueira.

Traumatismos editar

Calquera ferida ou contusión do ollo pode alterar a visión ou causar unha cegueira. En principio o ollo está ben protexido dentro da órbita ósea pero un golpe directo, un proxectil, os anacos do parabrisas ou un produto irritante pode afectalo.

Oftalmía editar

O ollo é moi sensible aos raios ultravioletas ben sexa de orixe natural (reflexo do sol na neve, a area ou a auga) ou artificial (soldaduras eléctricas, aparellos de esterilización, raios UVA).

Unha exposición excesiva produce unha inflamación moi dolorosa coñecida co nome de oftalmia. A única prevención consiste en levar lentes de sol tratadas cun filtro capaz de deter os raios ultravioletas e non uns simples cristais escuros.

Outros defectos e patoloxías editar

Notas editar

  1. Non existe un consenso universal sobre o número total exacto de fíos Animalia; a cifra indicada varía lixeiramente dun autor a outro.
Referencias
  1. Breitmeyer, Bruno (2010). Blindspots: The Many Ways We Cannot See. Nova York: Oxford University Press. p. 4. ISBN 978-0-19-539426-9. 
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Land, M.F.; Fernald, R.D. (1992). "The evolution of eyes". Annual Review of Neuroscience 15. pp. 1–29. PMID 1575438. doi:10.1146/annurev.ne.15.030192.000245. 
  3. Nairne, James (2005). Psychology. Belmont: Wadsworth Publishing. ISBN 978-0-495-03150-5. OCLC 61361417. Arquivado dende o orixinal o 2023-01-17. Consultado o 22 de decembro do 2023. 
  4. Bruce, Vicki; Green, Patrick R.; Georgeson, Mark A. (1996). Visual Perception: Physiology, Psychology and Ecology. Psychology Press. p. 20. ISBN 978-0-86377-450-8. Arquivado dende o orixinal o 2023-01-17. Consultado o 22 de decembro do 2023. 
  5. Kirk, Molly; Denning, David (2001). "What animal has a more sophisticated eye, Octopus or Insect?". BioMedia Associates. Arquivado dende o orixinal o 26 de febreiro de 2017. 
  6. "Who You Callin' "Shrimp"?". National Wildlife Magazine. National Wildlife Federation. 1 October 2010. Arquivado dende o orixinal o 9 August 2010. Consultado o 22 de decembro do 2023. 
  7. Meyer-Rochow, V.B. (1974). "Structure and function of the larval eye of the sawfly larva Perga". Journal of Insect Physiology 20 (8). pp. 1565–1591. PMID 4854430. doi:10.1016/0022-1910(74)90087-0. 
  8. Cronin, T.W.; Porter, M.L. (2008). "Exceptional Variation on a Common Theme: the Evolution of Crustacean Compound Eyes". Evolution: Education and Outreach 1 (4). pp. 463–475. doi:10.1007/s12052-008-0085-0. 
  9. Kozmik, Z.; Ruzickova, J.; Jonasova, K.; Matsumoto, Y.; Vopalensky, P.; Kozmikova, I.; Strnad, H.; Kawamura, S.; Piatigorsky, J.; et al. (2008). "Assembly of the cnidarian camera-type eye from vertebrate-like components". Proceedings of the National Academy of Sciences of the United States of America (Free full text) 105 (26). pp. 8989–8993. Bibcode:2008PNAS..105.8989K. PMC 2449352. PMID 18577593. doi:10.1073/pnas.0800388105. 
  10. Zhukov, ZH; Borisseko, SL; Zieger, MV; Vakoliuk, IA; Meyer-Rochow, VB (2006). "The eye of the freshwater prosobranch gastropod Viviparus viviparus: ultrastructure, electrophysiology and behaviour". Acta Zoologica 87. pp. 13–24. doi:10.1111/j.1463-6395.2006.00216.x. 
  11. Fernald, Russell D. (2006). "Casting a Genetic Light on the Evolution of Eyes". Science 313 (5795). pp. 1914–1918. Bibcode:2006Sci...313.1914F. PMID 17008522. doi:10.1126/science.1127889. 
  12. "Circadian Rhythms Fact Sheet". National Institute of General Medical Sciences. Arquivado dende o orixinal o 13 de marzo de 2020. Consultado o 25 de decembro do 2023. 
  13. Nilsson, Dan-E. (1989). "Vision optics and evolution". BioScience 39 (5). pp. 298–307. JSTOR 1311112. doi:10.2307/1311112. 

Véxase tamén editar

Outros artigos editar

Ligazóns externas editar