Factor de crecemento transformante beta 1

proteína segregada que realiza funcións celulares, como o control do crecemento celular, proliferación celular, diferenciación celular e apoptose
(Redirección desde «TGF-β1»)
Representación do TGF-β1 de PDB 1kla
Identificadores
Símbolo TGFB1
Símbolos alt. CED; DPD1; LAP; TGFB; TGFbeta
Entrez 7040
OMIM

190180

RefSeq NP_000651
UniProt P01137
Outros datos
Locus Cr. 19 :(41.3 – 41.35 Mb)

O factor de crecemento transformante beta 1 (TGF-β1) é un polipéptido membro da superfamilia do TGF beta de citocinas. É unha proteína segregada que realiza moitas funcións celulares, como o control do crecemento celular, proliferación celular, diferenciación celular e apoptose. En humanos, o TGF-β1 stá codificado polo xene TGFB1 do cromosoma 19.[1][2]

Función editar

O TGF-β é un conxunto multifuncional de peptidos que controla a proliferación e diferenciación celular, e outras funcións en moitos tipos celulares. O TGF-β actúa sinérxicamente co TGF alfa ao inducir a transformación tumoral de células. Tamén actúa como factor de crecemento autócrino. A desregulación da activación de TGF-β e a sinalización pode ter como resultado a apoptose. O TGF-β sintetízase en moitas células e todas teñen receptores específicos para este péptido. As isoformas TGF-β1, TGF-β2, e TGF-β3 funcionan todas utilizando os mesmos sistemas de sinalización por receptor.[3]

O TGF-β1 foi identificado primeiro en plaquetas humanas como proteína cunha masa molecular de 25 kDa cun uso potencial na curación de feridas.[4] Posteriormente determinouse que se sintetizaba como unha gran proteína precursora (que contén 390 aminoácidos) que é despois procesada proteoliticamente para producir un péptido maduro de 112 aminoácidos.[5]

O TGF-β1 xoga un importante papel no control do sistema inmunitario, e presenta distintas actividades en distintos tipos de células, ou en células que están en distintos estados de desenvolvemento. A maioría das células inmunitarias (ou leucocitos) segregan TGF-β1.[6]

Células T editar

Algunhas células T (por exemplo as células T reguladoras) liberan TGF-β1 para inhibir as accións doutras células T. A proliferación celular procedente da interleucina 1 e interleucina 2 de células T activadas,[7][8] e a activación de células T colaboladoras quiescentes e T citotóxicas impídese pola actividade do TGF-β1.[9][10] De xeito similar, o TGF-β1 pode inhibir a secreción e actividade de moitas outras citocinas, como o interferón-γ, factor de necrose tumoral-alfa (TNF-α) e varias interleucinas. Pode tamén diminuír os niveis de expresión de receptores de citocinas, como o receptor de IL-2 para regular á baixa a actividade das células inmunitarias. Porén, o TGF-β1 pode tamén incrementar a expresión de certas citocinas en células T e promove a súa proliferación, especialmente se as células son inmaturas.[6]

Células B editar

O TGF-β1 ten efectos similares sobre as células B que tamén varían segundo o estado de diferenciación celular. Inhibe a proliferación e estimula a apoptose de células B,[11] e xoga un papel no control da expresión de anticorpos, transferrina e proteínas MHC de clase II en células B maduras e inmaturas.[6][11]

Células mieloides editar

Os efectos de TGF-β1 sobre os macrófagos e monocitos son predominantemente supresores; esta citocina pode inhibir a proliferación de ditas células e impedir a súa produción de especies reactivas do oxíxeno (por exemplo superóxidos (O2)) e de intermediarios do nitróxeno (por exemplo óxido nítrico (NO)). Porén, igual que noutros tipos celulares, o TGF-β1 pode tamén ter o efecto oposto sobre as células de orixe mieloide. Por exemplo, o TGF-β1 actúa como quimioatractor, dirixindo unha resposta inmunitaria a algúns patóxenos; os macrófagos e monocitos responden a baixos niveis de TGF-β1 de modo quimiotáctico. Ademais, a expresión de citocinas monocíticas (como a interleucina 1 (IL-1)-alfa, IL-1-beta, e o TNF-α),[10] e a morte por fagocitose causada por macrófagos pode incrementarse pola acción do TGF-β1.[6]

Interaccións editar

O TGF-β1 presenta interaccións con:

Notas editar

  1. Ghadami M, Makita Y, Yoshida K, Nishimura G, Fukushima Y, Wakui K, Ikegawa S, Yamada K, Kondo S, Niikawa N, Tomita Ha (January 2000). "Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3". Am. J. Hum. Genet. 66 (1): 143–7. PMC 1288319. PMID 10631145. doi:10.1086/302728. 
  2. Vaughn SP, Broussard S, Hall CR, Scott A, Blanton SH, Milunsky JM, Hecht JT (May 2000). "Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region". Genomics 66 (1): 119–21. PMID 10843814. doi:10.1006/geno.2000.6192. 
  3. "Entrez Gene: TGFB1 transforming growth factor, beta 1". 
  4. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983). "Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization". J. Biol. Chem. 258 (11): 7155–60. PMID 6602130. 
  5. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985). "Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells". Nature 316 (6030): 701–5. PMID 3861940. doi:10.1038/316701a0. 
  6. 6,0 6,1 6,2 6,3 Letterio JJ, Roberts AB (1998). "Regulation of immune responses by TGF-beta". Annu. Rev. Immunol. 16: 137–61. PMID 9597127. doi:10.1146/annurev.immunol.16.1.137. 
  7. Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, Ellingsworth L, Schmidt JA, Hall G, Roberts AB (1988). "Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation". J. Immunol. 140 (9): 3026–32. PMID 3129508. 
  8. Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, van Hoffen E (2003). "Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response". Int. Immunol. 15 (12): 1495–504. PMID 14645158. doi:10.1093/intimm/dxg147. 
  9. Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO (1997). "Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells". Immunol. Invest. 26 (4): 459–72. PMID 9246566. doi:10.3109/08820139709022702. 
  10. 10,0 10,1 Wahl SM, Wen J, Moutsopoulos N (2006). "TGF-beta: a mobile purveyor of immune privilege". Immunol. Rev. 213: 213–27. PMID 16972906. doi:10.1111/j.1600-065X.2006.00437.x. 
  11. 11,0 11,1 Lebman DA, Edmiston JS (1999). "The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes". Microbes Infect. 1 (15): 1297–304. PMID 10611758. doi:10.1016/S1286-4579(99)00254-3. 
  12. Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (September 1994). "Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta". Biochem. J. 302 ( Pt 2): 527–34. PMC 1137259. PMID 8093006. 
  13. Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (July 1998). "Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen". Arch. Biochem. Biophys. 355 (2): 241–8. PMID 9675033. doi:10.1006/abbi.1998.0720. 
  14. Takeuchi Y, Kodama Y, Matsumoto T (Dec 1994). "Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity". J. Biol. Chem. 269 (51): 32634–8. PMID 7798269. 
  15. Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response". J. Biol. Chem. 273 (47): 31455–62. PMID 9813058. doi:10.1074/jbc.273.47.31455. 
  16. Saharinen J, Keski-Oja J (August 2000). "Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta". Mol. Biol. Cell 11 (8): 2691–704. PMC 14949. PMID 10930463. doi:10.1091/mbc.11.8.2691. 
  17. Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R (November 1993). "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science 262 (5135): 900–2. PMID 8235612. doi:10.1126/science.8235612. 
  18. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (March 2000). "Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2626–31. PMC 15979. PMID 10716993. doi:10.1073/pnas.97.6.2626. 
  19. McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Lett. 490 (1-2): 65–9. PMID 11172812. doi:10.1016/s0014-5793(01)02133-0. 

Véxase tamén editar

Outros artigos editar

Bibliografía editar