Abrir o menú principal

Curva

liña non recta
Ellipse PLS en.png

Unha curva é unha liña continua, que cambia paulatinamente de dirección. Exemplos de curvas pechadas son a elipse ou a circunferencia, e de curvas abertas a parábola, a hipérbole ou a catenaria. A recta sería o caso límite dun círculo de raio de curvatura infinito. Todas as curvas teñen dimensión igual a 1.

DefiniciónsEditar

Curva elementalEditar

Un conxunto   de puntos do espazo chámase curva elemental se é a imaxe obtida no espazo por unha aplicación continua dun segmento aberto de recta.[1]

Sendo   unha curva elemental e sendo   o segmento aberto no que está definida a aplicación   que determina a curva, ao sistema de igualdades

 

chámanselle ecuacións paramétricas da curva  .[1]

Curva planaEditar

 
Nun sistema de coordeadas cartesianas represéntanse as curvas dalgunhas raíces, así coma das súas potencias, no intervalo [0,1]. A diagonal, de ecuación y = x, é un eixo de simetría entre cada curva e a curva da súa inversa.

Unha curva plana é aquela que reside nun só plano e pode ser aberta ou pechada. A representación gráfica dunha función real dunha variable real é unha curva plana.

Curva diferenzableEditar

Unha curva é diferenzable cando a función   é diferenciable. Se ademais a función anterior é inxectiva no intervalo   entón a curva admite un vector tanxente único en cada punto i é rectificable, o que significa que a súa lonxitude de arco está ben definida i é posible calcular a súa lonxitude. A curva   :


 

é continua pero non diferenzable, polo que a súa lonxitude entre o punto (0,0) e cualquera outro punto da mesma non pode calcularse.

Curva pechadaEditar

Unha curva diferenzable es pechada cando   cando  . Se ademais, a función   é inxectiva no intervalo   entón dise que a curva é unha curva pechada simple. Unha curva pechada simple é homeomorfa ao círculo  , é dicir, ten a mesma topoloxía dun anel. A curva   dada por:


 

é unha curva diferenzable pechada, que resulta ser unha elipse de semieixos a e b.

Curva suaveEditar

Chámase curva suave á curva que non posúe puntos angulosos, coma por exemplo o círculo, a elipse ou a parábola.

Formalmente, dada una curva C representada pola ecuación paramétrica:

 

nun intervalo I calquera, é suave se as súas derivadas son continuas no intervalo I e non son simultáneamente nulas, excepto posiblemente nos puntos terminais do intervalo.

NotasEditar

  1. 1,0 1,1 "Geometría diferencial" (1977) Pogorélov, sen ISBN páx.14

Véxase taménEditar


 
 Este artigo sobre matemáticas é, polo de agora, só un bosquexo. Traballa nel para axudar a contribuír a que a Galipedia mellore e medre.
 Existen igualmente outros artigos relacionados con este tema nos que tamén podes contribuír.