Fracción irredutible
Unha fracción irredutible é unha fracción en que tanto o numerador como o denominador son números enteiros que non teñen divisores comúns fóra do 1 (e do -1 se se consideran os números negativos).[1] Noutras palabras, unha fracción a⁄b é irredutible se e só se a e b son coprimos, é dicir, se a e b teñen como máximo común divisor o 1. En matemáticas avanzadas, fracción irredutible pode referirse a fracción alxébricas en que o numerador e o denominador son polinomios coprimos[2] Todos os números racionais positivos poden representarse mediante unha fracción irredutible de xeito único.[3]
En ocasións pode ser útil unha fracción equivalente: se a, b son enteiros, entón a fracción a⁄b é irredutible se e só se non hai outra fracción c⁄d equivalente tal que |c| < |a| ou |d| < |b|, onde |a| significa o valor absoluto de a.[4] (Dúas fraccións a⁄b e c⁄d son equivalente se e só se ad = bc.)
Por exemplo, 1⁄4, 5⁄6, e −101⁄100 son fraccións irredutibles. Por outra banda, 2⁄4 non é irredutible xa que é equivalente a 1⁄2, e o numerador de 1⁄2 é menor que o numerador de 2⁄4.
Unha fracción pode ser simplificada dividindo o numerador e o denominador entre un factor común. Pode ser obtida a fracción irredutible se se dividen ambos os termos entre o máximo común divisor.[5] Para achar o máximo común divisor, pódense usar o algoritmo de Euclides ou a factorización en primos, mais o primeiro algoritmo adoita ser preferible ao non precisar factorizar números grandes para calculalo.[6]
Exemplos
editarNo primeiro paso dividíronse ambos os números entre 10, factor común de 120 e 90. No segundo paso, dividíronse entre 3. A solución final, 4/3, é unha fracción irredutible porque o único factor común de 4 e 3 é 1.
A fracción orixinal pode simplificarse nun só paso empregando o máximo común divisor de 90 e 120, que é 30 (i.e., mcd(90,120)=30):
Unicidade
editarTodo número racional ten unha representación única como fracción irredutible con denominador positivo[3] (non obstante, aínda que ambas son irredutibles). A unicidade é consecuencia do descomposición única en factores primos dos enteiros, xa que implica que ad = bc e polo tanto ambos membros da igualdade deben compartir a mesma factorización, e entón e non comparten factores primos, e o conxunto de factores primos de (coa súa multiplicidade) é un subconxunto dos de e viceversa, así que e .
Aplicacións
editarO feito de que calquera número racional ten unha representación única como fracción irredutible emprégase en varias probas da irracionalidade da raíz de 2 e doutros números irracionais. Por exemplo, unha proba indica que se a raíz cadrada de 2 puidese representarse como razón de enteiros, entón tería en particular unha representación simplificada onde a e b son os menores posibles; pero xa que é igual á raíz cadrada de 2, entón . Dado que a primeira é a fracción irredutible, existe unha contradición, que procede da inexistencia de razón de dous enteiros.
Xeneralización
editarA noción de fracción irredutible xeneralízase no corpo de fraccións de calquera dominio de factorización única: calquera elemento deste corpo pode ser descrito como unha fracción na que o denominador e numerador son coprimos, dividíndose ambos polo seu máximo común divisor.[7]
A fracción irredutible dun elemento dado é única agás a multiplicación do denominador e numerador polo mesmo elemento invertible. No caso dos números racionais, isto significa que calquera número ten dúas fraccións irredutíbeis, relacionadas por un cambio de signo do numerador e do denominador. Para evitar a ambigüidade, esta pódese eliminar fixando o denominador como positivo. No caso das funcións racionais, a ambigüidade elúdese se o denominador é sempre un polinomio mónico, é dicir, que o coeficiente do termo de maior grado é 1.[8]
Notas
editar- ↑ "Fraction". Encyclopedia of Mathematics. Consultado o 20 de marzo de 2019.
- ↑ Laudal, Olav Arnfinn; Piene, Ragni (2004). The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo, June 3-8, 2002. Springer. p. 155.
- ↑ 3,0 3,1 Scott, William (1844). Longman, Brown, Green, and Longmans, ed. Elements of Arithmetic and Algebra: For the Use of the Royal Military College. College text books, Sandhurst. Royal Military College 1. p. 75..
- ↑ Scott (1844), p. 74.
- ↑ Sally, Judith D.; Sally, Paul J., Jr. (2012). "9.1. Reducing a fraction to lowest terms". En American Mathematical Society. Integers, Fractions, and Arithmetic: A Guide for Teachers. MSRI mathematical circles library 10. pp. 131–134. ISBN 9780821887981..
- ↑ Scott, William (1844). Longman, Brown, Green, and Longmans, ed. Elements of Arithmetic and Algebra: For the Use of the Royal Military College. College text books, Sandhurst. Royal Military College 1. p. 75..
- ↑ Garrett, Paul B. (2007). CRC Press, ed. Abstract Algebra. p. 183. ISBN 9781584886907..
- ↑ Grillet, Pierre Antoine (2007). Springer, ed. Abstract Algebra. Graduate Texts in Mathematics 242. Lemma 9.2, p. 183. ISBN 9780387715681..