Máximo común divisor
En matemáticas, o máximo común divisor (MCD ou mdc)[1] ou máximo divisor común[2] de dous ou máis números enteiros é o maior número enteiro que os divide sen deixar resto.
Definicións
editarSe a e b son números enteiros distintos de cero e se o número c é tal que c|a e á súa vez c|b, este número c denomínase divisor común dos números a e b.[3] Cómpre observar que dous números enteiros calquera teñen divisores comúns; cando os únicos divisores comúns dos números a e b son 1 e -1, eses números chámanse primos entre si.
Un número enteiro d chámase máximo común divisor dos números a e b cando:
- d é divisor común dos números a e b e
- d é divisible por calquera outro divisor común dos números a e b.
Exemplo:
- 12 é o mcd de 36 e 60. Pois 12|36 e 12|60; á súa vez 12 é divisible por 1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12 e -12 que son divisores comúns de 36 e 60.[4]
Cálculo do máximo divisor común
editarO tres métodos máis utilizados para o cálculo do máximo divisor común de dous números son:
Por descomposición en factores primos
editarO máximo común divisor de dous números pode calcularse determinando a descomposición en factores primos dos dous números e tomando os factores comúns elevados á menor potencia, o produto dos cales será o mcd.
Exemplo: para calcular o máximo común divisor de 48 e de 60 obtense da súa factorización en factores primos.
|
|
O mcd son os factores comúns co seu menor expoñente, isto é:
Na práctica, este método só é operativo para números pequenos levando en xeral demasiado tempo calcular a descomposición en factores primos de dous números calquera.
Algoritmo de Euclides
editarUn método máis eficiente é o algoritmo de Euclides, que emprega o algoritmo da división xunto co feito de que o mcd de dous números tamén divide o resto obtido de dividir o maior entre o máis pequeno.
Exemplo 1: Se se divide 60 entre 48 dando un cociente de 1 e un resto de 12, o MCD será polo tanto divisor de 12. Despois divídese 48 entre 12 dando un resto de 0, o que significa que 12 é o mcd. Formalmente pode describirse como:
Exemplo 2: O MCD de 42 e 56 é 14. En efecto:
operando:
Co mínimo múltiplo común
editarO máximo divisor común tamén pode ser calculado empregando o mínimo común múltiplo. Se a e b son distintos de cero, entón o máximo divisor común de a e b obtense mediante a seguinte fórmula, que involucra o mínimo múltiplo común de a e b:
MCD de tres ou máis números
editarO máximo común divisor de tres ou máis números pódese definir recursivamente empregando o método: .[5][6]
Propiedades
editar1. Se entón 2. Se é un enteiro, 3. Se é un número primo, entón o bien 4. Se , entón 5. Se é un divisor común de e , entón 6. Se , entón 7. Se , entón Esta última propiedade indica que o máximo divisor común de dous números é o produto dos seus factores primos comúns elevados ao menor expoñente.
Xeometricamente, o máximo divisor común de a e b é o número de puntos de coordenadas enteiras que hai no segmento que une os puntos (0, 0) e (a, b), excluíndo o (0, 0).
Proposicións
editar- Para calquera par de números enteiros a≠0, b≠0, existe un único mcd d ≥ 1.[7]
- O mcd. dos números a e b pode ser representado en forma de combinación linear destes números. Isto é (a, b) = ax + by
- Se dous números enteiros son primos entre si, i.e. o seu mcd = 1 ou noutra notación (a, b) = 1, entón cómpre a representación ma + nb = 1 onde m e n son números enteiros (identidade de Bézout).
- Se a|bc e (a, b) = 1, será a|c. Noutras palabras, se un número a divide un produto doutros dous números e é coprimo cun deles, entón divide necesariamente o outro número ou factor.[8]
- Cando un número a é coprimo cos números m e n, tamén o é co produto mn.
- (a, b) é divisor de (a, bc)[9]
- t(a, b) = (ta, tb) para todo t enteiro[10]
- Se (m, b)= 1 entón (am, b)= (a, b)[11]
- Se (m, b)= 1, (am, n) = 1 entón (am, bn) = (a, b)
- Para todo x, (a, b)= (b, a) = (a, -b) = (a, b + ax)[12]
- Por definición, (0, 0) = 0;[13] deste xeito o mcd defínese en todo ℤ×ℤ.
- (a, b) = b se e só se b|a, (ou sexa se a é múltiplo de b).
- Se (a, b)= D, entón (an, bn) = Dn[14]
- mZ + nZ = (m, n)Z. Sumar senllos múltiplos de dous enteiros é o mesmo que considerar os múltiplos do seu máximo común divisor.[15]
- [16]
MCD como operación interna
editar- O mcd pódese estruturar como unha operación en ℤ; deste xeito a calquera par de enteiros, ou sexa a un elemento de ℤ×ℤ asígnalle un único elemento de ℤ.
- Para calquera par de enteiros (a, b) existe un enteiro non negativo d que é o seu máximo común divisor. Isto é a*b = (a, b) = d.
- O mcd goza da propiedade asociativa, como da propiedade conmutativa.
- O mcd posúe un elemento identidade, o cero, de modo tal que (a, 0)= (0, a)= a[17]
- O mcd ten un comportamento dual que o mínimo común múltiplo, e aos enteiros non negativos a e b lígaos a ecuación ab = (a, b)[a, b][18]
- Propiedade do 1: (a, 1) = 1 para calquera enteiro a, pois o 1 é divisor de todos os enteiros, ou ben xera os elementos de ℤ.
Aplicacións
editarO mcd emprégase para simplificar fraccións. Por exemplo, para simplificar a fracción calcúlase primeiro o mcd(60, 48) = 12, dividíndose o numerador e o denominador da fracción inicial por 12 para obter a fracción simplificada .
O mcd tamén se emprega para calcular o mínimo común múltiplo de dous números. En efecto, o produto dos dous números é igual ao produto do seu máximo divisor común polo seu mínimo común múltiplo. Así, para calcular o mínimo común múltiplo de 48 e de 60, calcúlase primeiro o seu mcd, 12, sendo o seu mínimo común múltiplo .
O mcd e o algoritmo de Euclides empréganse na resolución de ecuacións diofánticas lineares con dúas incógnitas[19] e para desenvolver un número racional en fraccións continuas.[20]
Notas
editar- ↑ Pérez Vázquez, Libia; Precedo Estraviz, Patricia; Seoane Bouzas, Nuria (2006). Profesionaliza a túa lingua matemática. Univesidade da Coruña. ISBN 84-9749-226-9.
- ↑ Masa Vázquez, Xosé M.; Fortes López, Belén (1995). Servicio de Normalización Lingüística da Universidade de Santiago de Compostela, ed. Vocabulario de Matemáticas. Santiago de Compostela. ISBN 84-8121-369-1.
- ↑ Belski e Kaluzhin, División inexacta (1997). Editorial Científica, Lima; páx.10
- ↑ Ibídem, páx. 10
- ↑ Vinogradov: Fundamentos de la teoría de números, editorial Mir.
- ↑ Castellet, Álgebra lineal y geometría, tema I.
- ↑ Ibídem, páx. 11
- ↑ Ibídem, páx. 13
- ↑ Vorobiov: Números de Fibonacci, Editorial Mir, Moscova (1974)
- ↑ Enzo Gentile, Aritmética elemental, ediciones OEA
- ↑ Gentile: Aritmética elemental OEA
- ↑ Niven e Zuckerman: Teoría de los números
- ↑ Gentile: Aritmética elemental
- ↑ Santillana: "Aritmética razonada", Lima
- ↑ Kostrikin: Introducción al álgebra, Editorial Mir, Moscú (1974)
- ↑ Pódese comprobar tendo en conta que (a/d, b/d)= 1, d=MCD
- ↑ Cotlar-Sadosky: Introducción al álgebra. Eudeba, BS.
- ↑ Gentile: Ibídem
- ↑ Ibídem páx. 17 y 20
- ↑ Gentile: Aritmética elemental OEA (1987)
Véxase tamén
editarBibliografía
editar- Andrews, George E. (1994) [1971]. Number Theory. Dover. ISBN 9780486682525.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest e Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 31.2: Greatest common divisor, pp. 856–862.
- Hardy, G. H.; Wright, E. M. (1979). An Introduction to the Theory of Numbers (Fifth ed.). Oxford: Oxford University Press. ISBN 978-0-19-853171-5.
- Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. Section 4.5.2: The Greatest Common Divisor, pp. 333–356.
- Long, Calvin T. (1972). Elementary Introduction to Number Theory (2nd ed.). Lexington: D. C. Heath and Company. LCCN 77171950.
- Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970). Elements of Number Theory. Englewood Cliffs: Prentice Hall. LCCN 71081766.
- Saunders MacLane e Garrett Birkhoff. A Survey of Modern Algebra, Fourth Edition. MacMillan Publishing Co., 1977. ISBN 0-02-310070-2. 1–7: "The Euclidean Algorithm."
Ligazóns externas
editar- Weisstein, Eric W. «Greatest Common Divisor».
- Método para calcular o máximo divisor e o mínimo múltiplo comúns á vez Arquivado 01 de xuño de 2017 en Wayback Machine.