Antíxeno nuclear de célula proliferante

A abrazadeira do ADN humana ensamblada é un trímero da proteína PCNA.
Antíxeno nuclear de célula proliferante (Proliferating cell nuclear antigen, PCNA)
Identificadores
Símbolo PCNA
Símbolos alt. ATLD2
Entrez 5111
OMIM

176740

RefSeq NP_002583
UniProt P12004
Outros datos
Locus Cr. 20 :(5.11 – 5.13 Mb)

O antíxeno nuclear de célula proliferante ou PCNA (do inglés Proliferating cell nuclear antigen) é unha abrazadeira do ADN que actúa como factor de procesividade para a ADN polimerase δ nas células eucariotas e é esencial para a replicación do ADN. O PCNA é un homotrímero (formado por tres unidades PCNA) e debe a súa procesividade a que rodear o ADN como un anel ou abrazadeira, onde actúa como un armazón que recruta proteínas implicadas na replicación do ADN, reparación do ADN, remodelación da cromatina e na epixenética.[1]

Co PCNA interaccionan moitas proteínas por medio dos chamados motivo de interacción do PCNA, caixa do péptido que interacciona co PCNA (PIP box) [2] e motivo que interaccióna co PCNA homólogo 2 de AlkB (APIM, AlkB homologue 2 PCNA interacting motif).[3] As proteínas que se unen ao PCNA por medio da caixa PIP están implicadas principalmente na replicación do ADN, mentres que aquelas que se unen ao PCNA por medio do APIM son importantes principalmente no contexto do estrés xenotóxico.[4]

Función

editar

En humanos esta proteína está codificada polo xene PCNA do cromosoma 20. A proteína codificada por este xene encóntrase no núcleo e é un cofactor da ADN polimerase delta. A proteína codificada actúa como homotrímero e axuda a incrementar a procesividade da síntese na febra guía durante a replicación do ADN. En resposta aos danos no ADN, esta proteína é ubiquitinada e está implicada na vía de reparacion do ADN dependente de RAD6. Atopáronse dúas variantes de transcrición desta proteína codificadas no mesmo xene. Ademais, describíronse pseudoxenes deste xene nos cromosomas 4 e X.[5]

Expresión no núcleo durante a síntese de ADN

editar

O PCNA foi identificado orixinalmente como un antíxeno que se expresaba no núcleo celular durante a fase S (de síntese de ADN) do ciclo celular, de aí o seu nome.[6] Parte da proteína foi secuenciada e esa secuencia foi utilizada para despois illar un clon de ADNc.[7] O PCNA axuda a manter a ADN polimerase epsilon (Pol ε) no ADN. O PCNA agárrase [8] ao ADN grazas á acción do factor de replicación C (RFC),[9] o cal é un membro heteropentamérico da clase AAA+ de ATPases. A expresión de PCNA está baixo o control de complexos que conteñen o factor de transcrición E2F.[10]

Función na reparación do ADN

editar

Como a ADN polimerase epsilon está implicada na resíntese das febras de ADN danadas escindidas durante a reparación do ADN, o PCNA é importante tanto para a síntese de ADN coma para a reparación do ADN.[11][12]

O PCNA intervén tamén na vía de tolerancia aos danos no ADN chamada reparación post-replicación (PRR).[13] Na reparación post-replicación hai dúas subvías: (1) a vía translesión, que é levada a cabo por ADN polimerases especializadas que teñen a capacidade de incorporar bases de ADN danado nos seus sitios activos (a diferenza as polimerase replicativa normal, que queda bloqueada), e dese xeito pode sortear a zona danada, e (2) unha vía proposta chamada de "cambio de molde" (template switch), que se cre está implicada en pasar pola zona danada ao recrutar a maquinaria da recombinación homóloga.

O PCNA ten un papel central na activación destas vías e na elección de que vía será utilizada pola célula. O PCNA é modificado postraducionalmente pola ubiquitina.[14] A monoubiquitina unida á lisina número 164 do PCNA activa a vía de síntese translesión. A extensión desta monoubiquitina por unha cadea de poliubiquitina unida á lisina 63 non canónica no PCNA[14] pénsase que activa a vía de cambio de molde. Ademais, a sumoilación (por pequenas proteínas modificadoras parecidas á ubiquitina chamadas SUMO) da lisina 164 do PCNA (e en menor medida da lisina 127) inhibe a vía de cambio de molde.[14] Este efecto antagónico ocorre porque o PCNA sumoilado recruta unha ADN helicase chamada Srs2,[15] que ten un papel na distorsión dos filamentos da nucleoproteína Rad51, que é fundamental para a iniciación da recombinación homóloga.

Proteínas que se unen ao PCNA

editar

Dominio proteico TCP  • receptor NKp44  • procaspases [16]  • ADN polimerases  • cargador da abrazadeira  • endonuclease flap  • ADN ligase  • topoisomerase  • factor autorizador da replicación (replication licensing factor)  • ubiquitina ligases E3  • encima conxugador de SUMO E2  • helicases, ATPases  • encimas de reparación de discordancias (apareamentos de bases non complementarias)  • encimas de reparación de excisión de bases  • encima de reparación da excisión de nucleótidos  • poli ADP ribosa polimerase  • chaperona de histona  • factor remodelador da cromatina  • histona acetiltransferase  • histona desacetiltransferase  • ADN metiltransferase  • factores de cohesión das cromátides irmás  • proteína quinases  • reguladores do ciclo celular  • factores apoptóticos.

Para máis detalles ver [17].

Interaccións

editar

O PCNA presenta interaccións con:

Entre as proteínas que interaccionan co PCNA por medio de APIM están o homólogo 2 de AlkB humano, TFIIS-L, TFII-I, Rad51B,[3] XPA,[78] ZRANB3,[79] e FBH1.[80]

Poden utilizarse anticorpos contra o PCNA ou o anticorpo monoclonal denominado Ki-67 para clasificar diferentes neoplasmas, por exemplo, o astrocitoma. Poden ser útiles tamén para facer diagnósticos e prognósticos. As imaxes da distribución nuclear do PCNA (por medio de etiquetado de anticorpos) poden utilizarse para distinguir entre as fase S temperá, media ou tardía do ciclo celular.[81] Porén, unha importante limitación deste uso dos anticorpos é que as células necesitan ser fixadas o que pode producir artefactos.

Por outra parte, o estudo da dinámica da replicación e reparación en células vivas pode facerse introducindo fusións traducionais do PCNA. Para obviar a necesidade de transfección e sortear o problema da dificultade que hai para transfectar e a curta vida das células, pode usarse a replicación permeable de células e os marcadores de reparación. Estes péptidos ofrecen a clara vantaxe de que poden utilizarse in situ en tecidos vivos e mesmo poden distinguirse as células en replicación das células en reparación.[82]

O PCNA é unha diana terapéutica potencial na terapia do cancro.[83]

  1. Moldovan GL, Pfander B, Jentsch S (18 de maio de 2007). "PCNA, the maestro of the replication fork.". Cell 129 (4): 665–79. PMID 17512402. doi:10.1016/j.cell.2007.05.003. 
  2. Warbrick E (Mar 1998). "PCNA binding through a conserved motif.". BioEssays : news and reviews in molecular, cellular and developmental biology 20 (3): 195–9. PMID 9631646. doi:10.1002/(sici)1521-1878(199803)20:3<195::aid-bies2>3.0.co;2-r. 
  3. 3,0 3,1 Gilljam KM, Feyzi E, Aas PA, Sousa MM, Müller R, Vågbø CB, Catterall TC, Liabakk NB, Slupphaug G, Drabløs F, Krokan HE, Otterlei M (Sep 7, 2009). "Identification of a novel, widespread, and functionally important PCNA-binding motif.". The Journal of Cell Biology 186 (5): 645–54. PMC 2742182. PMID 19736315. doi:10.1083/jcb.200903138. 
  4. Mailand N, Gibbs-Seymour I, Bekker-Jensen S (maio de 2013). "Regulation of PCNA-protein interactions for genome stability.". Nature reviews. Molecular cell biology 14 (5): 269–82. PMID 23594953. doi:10.1038/nrm3562. 
  5. "Entrez Gene: PCNA proliferating cell nuclear antigen". 
  6. Leonardi E, Girlando S, Serio G, Mauri FA, Perrone G, Scampini S, Dalla Palma P, Barbareschi M (1992). "PCNA and Ki67 expression in breast carcinoma: correlations with clinical and biological variables". J. Clin. Pathol. 45 (5): 416–419. PMC 495304. PMID 1350788. doi:10.1136/jcp.45.5.416. 
  7. Matsumoto K, Moriuchi T, Koji T, Nakane PK (1987). "Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin". EMBO J. 6 (3): 637–42. PMC 553445. PMID 2884104. 
  8. Bowman GD, O'Donnell M, Kuriyan J (2004). "Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex". Nature 429 (6993): 724–730. PMID 15201901. doi:10.1038/nature02585. 
  9. Zhang G, Gibbs E, Kelman Z, O'Donnell M, Hurwitz J (1999). "Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 96 (5): 1869–1874. PMC 26703. PMID 10051561. doi:10.1073/pnas.96.5.1869. 
  10. Egelkrout EM, Mariconti L, Settlage SB, Cella R, Robertson D, Hanley-Bowdoin L (2002). "Two E2F elements regulate the proliferating cell nuclear antigen promoter differently during leaf development". Plant Cell 14 (12): 3225–3236. PMC 151214. PMID 12468739. doi:10.1105/tpc.006403. 
  11. Shivji KK, Kenny MK, Wood RD (abril de 1992). "Proliferating cell nuclear antigen is required for DNA excision repair". Cell 69 (2): 367–74. PMID 1348971. doi:10.1016/0092-8674(92)90416-A. 
  12. Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005). "Nuclear dynamics of PCNA in DNA replication and repair". Mol. Cell. Biol. 25 (21): 9350–9359. PMC 1265825. PMID 16227586. doi:10.1128/MCB.25.21.9350-9359.2005. 
  13. Lehmann AR, Fuchs RP (decembro de 2006). "Gaps and forks in DNA replication: Rediscovering old models". DNA Repair (Amst.) 5 (12): 1495–1498. PMID 16956796. doi:10.1016/j.dnarep.2006.07.002. 
  14. 14,0 14,1 14,2 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (setembro de 2002). "RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO". Nature 419 (6903): 135–141. PMID 12226657. doi:10.1038/nature00991. 
  15. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (xullo de 2005). "SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase". Nature 436 (7049): 428–33. PMID 15931174. doi:10.1038/nature03665. 
  16. Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, Candalh C, Davezac N, Reuter N, Mouthon L, Hermine O, Pederzoli-Ribeil M, Cassatella MA (Nov 22, 2010). "Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival.". The Journal of experimental medicine 207 (12): 2631–45. PMC 2989777. PMID 20975039. doi:10.1084/jem.20092241. 
  17. Moldovan GL, Pfander B, Jentsch S (2007). "PCNA, the maestro of the replication fork". Cell 129 (4): 665–679. PMID 17512402. doi:10.1016/j.cell.2007.05.003. 
  18. 18,00 18,01 18,02 18,03 18,04 18,05 18,06 18,07 18,08 18,09 18,10 18,11 18,12 Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T (outubro de 2002). "A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein". J. Biol. Chem. 277 (43): 40362–7. PMID 12171929. doi:10.1074/jbc.M206194200. 
  19. Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, Okamoto T (marzo de 2002). "Cdc25C interacts with PCNA at G2/M transition". Oncogene 21 (11): 1717–26. PMID 11896603. doi:10.1038/sj.onc.1205229. 
  20. Matsuoka S, Yamaguchi M, Matsukage A (abril de 1994). "D-type cyclin-binding regions of proliferating cell nuclear antigen". J. Biol. Chem. 269 (15): 11030–6. PMID 7908906. 
  21. 21,0 21,1 Xiong Y, Zhang H, Beach D (agosto de 1993). "Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation". Genes Dev. 7 (8): 1572–83. PMID 8101826. doi:10.1101/gad.7.8.1572. 
  22. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (xullo de 1999). "Post-replicative base excision repair in replication foci". EMBO J. 18 (13): 3834–44. PMC 1171460. PMID 10393198. doi:10.1093/emboj/18.13.3834. 
  23. Serrano M, Hannon GJ, Beach D (decembro de 1993). "A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4". Nature 366 (6456): 704–7. PMID 8259215. doi:10.1038/366704a0. 
  24. 24,0 24,1 Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y (febreiro de 1998). "Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 95 (4): 1392–7. PMC 19016. PMID 9465025. doi:10.1073/pnas.95.4.1392. 
  25. Rountree MR, Bachman KE, Baylin SB (xullo de 2000). "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci". Nat. Genet. 25 (3): 269–77. PMID 10888872. doi:10.1038/77023. 
  26. Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (outubro de 2002). "PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA". Genes Cells 7 (10): 997–1007. PMID 12354094. doi:10.1046/j.1365-2443.2002.00584.x. 
  27. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (setembro de 1997). "Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1". Science 277 (5334): 1996–2000. PMID 9302295. doi:10.1126/science.277.5334.1996. 
  28. Hasan S, Hassa PO, Imhof R, Hottiger MO (marzo de 2001). "Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis". Nature 410 (6826): 387–91. PMID 11268218. doi:10.1038/35066610. 
  29. Henneke G, Koundrioukoff S, Hübscher U (xullo de 2003). "Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation". Oncogene 22 (28): 4301–13. PMID 12853968. doi:10.1038/sj.onc.1206606. 
  30. Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO (xuño de 2001). "Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300". Mol. Cell 7 (6): 1221–31. PMID 11430825. doi:10.1016/s1097-2765(01)00272-6. 
  31. 31,0 31,1 Jónsson ZO, Hindges R, Hübscher U (abril de 1998). "Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen". EMBO J. 17 (8): 2412–25. PMC 1170584. PMID 9545252. doi:10.1093/emboj/17.8.2412. 
  32. Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS (setembro de 1997). "The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21". J. Biol. Chem. 272 (39): 24522–9. PMID 9305916. doi:10.1074/jbc.272.39.24522. 
  33. Chen U, Chen S, Saha P, Dutta A (outubro de 1996). "p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex". Proc. Natl. Acad. Sci. U.S.A. 93 (21): 11597–602. PMC 38103. PMID 8876181. doi:10.1073/pnas.93.21.11597. 
  34. Dianova II, Bohr VA, Dianov GL (outubro de 2001). "Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair". Biochemistry 40 (42): 12639–44. PMID 11601988. doi:10.1021/bi011117i. 
  35. 35,0 35,1 35,2 Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y (xaneiro de 2001). "p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues". Oncogene 20 (4): 484–9. PMID 11313979. doi:10.1038/sj.onc.1204113. 
  36. Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ (novembro de 1994). "Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen". Science 266 (5189): 1376–80. PMID 7973727. doi:10.1126/science.7973727. 
  37. Chen IT, Smith ML, O'Connor PM, Fornace AJ (novembro de 1995). "Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA". Oncogene 11 (10): 1931–7. PMID 7478510. 
  38. Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA (xuño de 2000). "Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control". J. Biol. Chem. 275 (22): 16810–9. PMID 10828065. doi:10.1074/jbc.275.22.16810. 
  39. Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS (xuño de 1995). "Characterisation of the interaction between PCNA and Gadd45". Oncogene 10 (12): 2427–33. PMID 7784094. 
  40. Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW (novembro de 2000). "Identification of a functional domain in a GADD45-mediated G2/M checkpoint". J. Biol. Chem. 275 (47): 36892–8. PMID 10973963. doi:10.1074/jbc.M005319200. 
  41. Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (xaneiro de 2001). "Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control". J. Biol. Chem. 276 (4): 2766–74. PMID 11022036. doi:10.1074/jbc.M005626200. 
  42. Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A (agosto de 1999). "A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth". J. Biol. Chem. 274 (35): 24766–72. PMID 10455148. doi:10.1074/jbc.274.35.24766. 
  43. Milutinovic S, Zhuang Q, Szyf M (xuño de 2002). "Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification". J. Biol. Chem. 277 (23): 20974–8. PMID 11929879. doi:10.1074/jbc.M202504200. 
  44. Komatsu K, Wharton W, Hang H, Wu C, Singh S, Lieberman HB, Pledger WJ, Wang HG (novembro de 2000). "PCNA interacts with hHus1/hRad9 in response to DNA damage and replication inhibition". Oncogene 19 (46): 5291–7. PMID 11077446. doi:10.1038/sj.onc.1203901. 
  45. Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K (outubro de 2001). "UV-induced binding of ING1 to PCNA regulates the induction of apoptosis". J. Cell. Sci. 114 (Pt 19): 3455–62. PMID 11682605. 
  46. He H, Tan CK, Downey KM, So AG (outubro de 2001). "A tumor necrosis factor alpha- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase delta and proliferating cell nuclear antigen". Proc. Natl. Acad. Sci. U.S.A. 98 (21): 11979–84. PMC 59753. PMID 11593007. doi:10.1073/pnas.221452098. 
  47. 47,0 47,1 Balajee AS, Geard CR (marzo de 2001). "Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells". Nucleic Acids Res. 29 (6): 1341–51. PMC 29758. PMID 11239001. doi:10.1093/nar/29.6.1341. 
  48. Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M (outubro de 2002). "Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication". Biochim. Biophys. Acta 1578 (1-3): 59–72. PMID 12393188. doi:10.1016/s0167-4781(02)00497-9. 
  49. Fujise K, Zhang D, Liu J, Yeh ET (decembro de 2000). "Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen". J. Biol. Chem. 275 (50): 39458–65. PMID 10978339. doi:10.1074/jbc.M006626200. 
  50. 50,0 50,1 Kleczkowska HE, Marra G, Lettieri T, Jiricny J (marzo de 2001). "hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci". Genes Dev. 15 (6): 724–36. PMC 312660. PMID 11274057. doi:10.1101/gad.191201. 
  51. 51,0 51,1 Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA (novembro de 2000). "Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes". J. Biol. Chem. 275 (47): 36498–501. PMID 11005803. doi:10.1074/jbc.C000513200. 
  52. Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL (febreiro de 2001). "Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair". J. Biol. Chem. 276 (8): 5547–55. PMID 11092888. doi:10.1074/jbc.M008463200. 
  53. 53,0 53,1 Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hübscher U, Fotedar A (agosto de 1996). "A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells". EMBO J. 15 (16): 4423–33. PMC 452166. PMID 8861969. 
  54. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (outubro de 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. PMID 16189514. doi:10.1038/nature04209. 
  55. Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI (outubro de 2003). "Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners". J. Biol. Chem. 278 (41): 39265–8. PMID 12930846. doi:10.1074/jbc.C300098200. 
  56. Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (outubro de 1996). "Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA". Cell 87 (2): 297–306. PMID 8861913. doi:10.1016/s0092-8674(00)81347-1. 
  57. Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ (maio de 2001). "A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome". EMBO J. 20 (10): 2367–75. PMC 125454. PMID 11350925. doi:10.1093/emboj/20.10.2367. 
  58. Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG (xullo de 2002). "Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta". J. Biol. Chem. 277 (27): 24340–5. PMID 11986310. doi:10.1074/jbc.M200065200. 
  59. Ducoux M, Urbach S, Baldacci G, Hübscher U, Koundrioukoff S, Christensen J, Hughes P (decembro de 2001). "Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta". J. Biol. Chem. 276 (52): 49258–66. PMID 11595739. doi:10.1074/jbc.M106990200. 
  60. Liu L, Rodriguez-Belmonte EM, Mazloum N, Xie B, Lee MY (marzo de 2003). "Identification of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase delta and proliferating cell nuclear antigen". J. Biol. Chem. 278 (12): 10041–7. PMID 12522211. doi:10.1074/jbc.M208694200. 
  61. Haracska L, Johnson RE, Unk I, Phillips B, Hurwitz J, Prakash L, Prakash S (novembro de 2001). "Physical and functional interactions of human DNA polymerase eta with PCNA". Mol. Cell. Biol. 21 (21): 7199–206. PMC 99895. PMID 11585903. doi:10.1128/MCB.21.21.7199-7206.2001. 
  62. Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S (febreiro de 2002). "Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA". Mol. Cell. Biol. 22 (3): 784–91. PMC 133560. PMID 11784855. doi:10.1128/mcb.22.3.784-791.2002. 
  63. Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hübscher U (decembro de 2002). "Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis". J. Biol. Chem. 277 (50): 48434–40. PMID 12368291. doi:10.1074/jbc.M206889200. 
  64. Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O (xullo de 2002). "Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme". Genes Cells 7 (7): 639–51. PMID 12081642. doi:10.1046/j.1365-2443.2002.00547.x. 
  65. Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, Hurwitz J, Ozato K (setembro de 2002). "A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase". Mol. Cell. Biol. 22 (18): 6509–20. PMC 135621. PMID 12192049. doi:10.1128/mcb.22.18.6509-6520.2002. 
  66. 66,0 66,1 Mossi R, Jónsson ZO, Allen BL, Hardin SH, Hübscher U (xaneiro de 1997). "Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen". J. Biol. Chem. 272 (3): 1769–76. PMID 8999859. doi:10.1074/jbc.272.3.1769. 
  67. van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T (abril de 1999). "The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins". J. Mol. Med. 77 (4): 386–92. PMID 10353443. doi:10.1007/s001090050365. 
  68. 68,0 68,1 68,2 Cai J, Gibbs E, Uhlmann F, Phillips B, Yao N, O'Donnell M, Hurwitz J (xullo de 1997). "A complex consisting of human replication factor C p40, p37, and p36 subunits is a DNA-dependent ATPase and an intermediate in the assembly of the holoenzyme". J. Biol. Chem. 272 (30): 18974–81. PMID 9228079. doi:10.1074/jbc.272.30.18974. 
  69. Pan ZQ, Chen M, Hurwitz J (xaneiro de 1993). "The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis". Proc. Natl. Acad. Sci. U.S.A. 90 (1): 6–10. PMC 45588. PMID 8093561. doi:10.1073/pnas.90.1.6. 
  70. Merkle CJ, Karnitz LM, Henry-Sánchez JT, Chen J (agosto de 2003). "Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment". J. Biol. Chem. 278 (32): 30051–6. PMID 12766176. doi:10.1074/jbc.M211591200. 
  71. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (agosto de 2008). "Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks". Proc. Natl. Acad. Sci. U.S.A. 105 (34): 12411–6. PMC 2518831. PMID 18719106. doi:10.1073/pnas.0805685105. 
  72. Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L (marzo de 2008). "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proc. Natl. Acad. Sci. U.S.A. 105 (10): 3768–73. PMC 2268824. PMID 18316726. doi:10.1073/pnas.0800563105. 
  73. Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA (2008). "hMMS2 serves a redundant role in human PCNA polyubiquitination". BMC Mol. Biol. 9: 24. PMC 2263069. PMID 18284681. doi:10.1186/1471-2199-9-24. 
  74. Rodríguez-López AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS (febreiro de 2003). "Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner's syndrome, and an essential replication factor, PCNA". Mech. Ageing Dev. 124 (2): 167–74. PMID 12633936. doi:10.1016/s0047-6374(02)00131-8. 
  75. Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J (xuño de 2000). "Characterization of the human and mouse WRN 3'-->5' exonuclease". Nucleic Acids Res. 28 (12): 2396–405. PMC 102739. PMID 10871373. doi:10.1093/nar/28.12.2396. 
  76. Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM. "XRCC1 co-localizes and physically interacts with PCNA". Nucleic Acids Res. 32 (7): 2193–201. PMC 407833. PMID 15107487. doi:10.1093/nar/gkh556. 
  77. Ise T, Nagatani G, Imamura T, Kato K, Takano H, Nomoto M, Izumi H, Ohmori H, Okamoto T, Ohga T, Uchiumi T, Kuwano M, Kohno K (xaneiro de 1999). "Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen". Cancer Res. 59 (2): 342–6. PMID 9927044. 
  78. Gilljam KM, Müller R, Liabakk NB, Otterlei M (2012). "Nucleotide excision repair is associated with the replisome and its efficiency depends on a direct interaction between XPA and PCNA.". PLoS ONE 7 (11): e49199. PMC 3496702. PMID 23152873. doi:10.1371/journal.pone.0049199. 
  79. Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ (Aug 10, 2012). "Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress.". Molecular Cell 47 (3): 396–409. PMC 3613862. PMID 22704558. doi:10.1016/j.molcel.2012.05.024. 
  80. Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL (Jul 2013). "The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells.". Nucleic Acids Research 41 (13): 6501–13. PMC 3711418. PMID 23677613. doi:10.1093/nar/gkt397. 
  81. Schönenberger F, Deutzmann A, Ferrando-May E, Merhof D (29 de maio de 2015). "Discrimination of cell cycle phases in PCNA-immunolabeled cells". BMC Bioinform. 16 (180). PMID 26022740. doi:10.1186/s12859-015-0618-9. 
  82. Herce HD, Rajan M, Lättig-Tünnemann G, Fillies M, Cardoso MC (3 de setembro de 2014). "A novel cell permeable DNA replication and repair marker.". Nucleus (Austin, Tex.) 5 (6): 590–600. PMID 25184478. doi:10.4161/nucl.36290. 
  83. Wang SC (Apr 2014). "PCNA: a silent housekeeper or a potential therapeutic target?". Trends in pharmacological sciences 35 (4): 178–186. PMID 24655521. doi:10.1016/j.tips.2014.02.004. 

Véxase tamén

editar

Outros artigos

editar

Ligazóns externas

editar

Bibliografía

editar