Henri Léon Lebesgue

matemático francés
(Redirección desde «Henri Leon Lebesgue»)

Henri Léon Lebesgue (ɑ̃ʁi leɔ̃ ləbɛɡ), nado en Beauvais o 28 de xuño de 1875 e finado en París o 26 de xullo de 1941, foi un matemático francés.

Modelo:BiografíaHenri Léon Lebesgue
Nome orixinal(fr) Henri-Léon Lebesgue Editar o valor en Wikidata
Biografía
Nacemento28 de xuño de 1875
Beauvais, Francia
Morte26 de xullo de 1941
París
Lugar de sepulturaQ73663612 Traducir 49°11′23″N 2°25′50″L / 49.189605, 2.4306811 Editar o valor en Wikidata
País de nacionalidadeFrancia
EducaciónÉcole Normale Supérieure
Liceo Louis-le-Grand
Lycée Saint-Louis (pt) Traducir Editar o valor en Wikidata
Tese académicaIntegral, Length, Area (en) Traducir Editar o valor en Wikidata (1902 Editar o valor en Wikidata)
Director de teseÉmile Borel Editar o valor en Wikidata
Actividade
Campo de traballoAnálise matemática, Análise funcional, cálculo infinitesimal, matemáticas, espaço Lp (pt) Traducir, Integral de Lebesgue (pt) Traducir e topoloxía Editar o valor en Wikidata
OcupaciónMatemático
EmpregadorCollège de France (pt) Traducir, catedrático (1921–1941)
Universidade de París (1910–1919)
Universidade de Poitiers (pt) Traducir (1906–1910)
Universidade de Rennes (1902–1906) Editar o valor en Wikidata
Membro de
ProfesoresJoseph Caron (en) Traducir Editar o valor en Wikidata
AlumnosArnaud Denjoy (pt) Traducir e Louis Antoine (pt) Traducir Editar o valor en Wikidata
Obra
Obras destacables
DoutorandoPaul Montel (pt) Traducir, Zygmunt Janiszewski (pt) Traducir, Georges de Rham (pt) Traducir, André Marchaud (en) Traducir e Florin Vasilesco (en) Traducir Editar o valor en Wikidata
Premios

Descrito pola fonteBiblioteca dixital BEIC
Obálky knih,
Grande Enciclopedia Soviética (1926—1947) Editar o valor en Wikidata
WikiTree: Lebesgue-1

Traxectoria

editar

Naceu en Beauvais, Oise, Picardie, Francia. Estudou na Escola Normal Superior e no período 1899 - 1902 impartiu clases no Liceo de Nancy. En 1910 recibiu unha cátedra na Universidade da Sorbona.

Achegas matemáticas

editar
 
Leçons sur l'integration et la recherche des fonctions primitives, 1904

Lebesgue é fundamentalmente coñecido polas súas achegas á teoría da medida e da integral. A partir dos traballos doutros matemáticos como Émile Borel e Camille Jordan, Lebesgue realizou importantes contribucións á teoría da medida en 1901. Ao ano seguinte, na súa disertación Intégrale, longueur, aire (Integral, lonxitude, área) presentada na Universidade de Nancy, definiu a integral de Lebesgue, que xeneraliza a noción da integral de Riemann estendendo o concepto de área baixo unha curva para incluír funcións descontinuas. Este é un dos logros da análise moderna que expande o alcance da análise de Fourier.

Tamén fixo achegas en ramas como a topoloxía, a teoría do potencial e a análise de Fourier. En 1905 presentou unha discusión sobre as condicións que Lipschitz e que Jordan utilizaran para asegurar que f(x) é a suma da súa serie de Fourier.

A partir de 1910 non se concentrou máis na área de estudo que el iniciara, debido a que o seu traballo era unha xeneralización, e el era temeroso das mesmas. Nas súas propias palabras: Reducida a teorías xerais, as matemáticas serían unha forma fermosa sen contido. Morrerían rapidamente. A pesar de que desenvolvementos posteriores demostraron que o seu temor non tiña fundamento, este permítenos entender o curso que seguiu o seu traballo.

Ademais de aproximadamente 50 artigos, escribiu dous libros: Leçons sur l'intégration et la recherché des fonctions primitives (1904) e Leçons sur les séries trigonométriques (1906).

Véxase tamén

editar

Outros artigos

editar

Ligazóns externas

editar