Sinorhizobium meliloti

Sinorhizobium meliloti

Sinorhizobium meliloti cepa Rm1021 nunha placa de ágar.
Clasificación científica
Reino: Bacteria
Filo: Proteobacteria
Clase: Alphaproteobacteria
Orde: Rhizobiales
Familia: Rhizobiaceae
Xénero: Sinorhizobium
Especie: S. meliloti
Nome binomial
Sinorhizobium meliloti
(Dangeard 1926) De Lajudie et al. 1994, comb. nov.
biovares
  • S. m. bv. acaciae[1]
  • S. m. bv. ciceri[2][3]
  • S. m. bv. lancerottense[4]
  • S. m. bv. medicaginis[5]
  • S. m. bv. mediterranense[6]
  • S. m. bv. meliloti
  • S. m. bv. rigiduloides[7]
  • S. m. ecotype NRR[8]
Sinonimia
  • Rhizobium meliloti Dangeard 1926
  • Ensifer meliloti (Dangeard 1926) Young 2003

Sinorhizobium meliloti é unha bacteria gramnegativa que fixa o nitróxeno atmosférico. Establece unha relación simbiótica coas leguminosas dos xéneros Medicago, Melilotus e Trigonella, incluíndo a leguminosa modelo Medicago truncatula. Esta simbiose orixina un novo órgano na planta denominado nódulo radicular. A relación considérase simbiótica, xa que a bacteria deixa o exceso de nitróxeno fixado a disposición da planta. S. meliloti é móbil e posúe un grupo de flaxelos peritricos. O seu xenoma contén catro xenes que codifican a flaxelina, entre os que está fliC1C2–fliC3C4.[9] O xenoma contén tres replicóns: un cromosoma (~3.7 megabases) e dous megaplásmidos pSymB (~1.7 megabases) e pSymA (~1.4 megabases). Secuenciáronse ata agora cinco xenomas de S. meliloti: Rm1021,[10] AK83,[11] BL225C,[11] Rm41,[12] e SM11[13] e considérase que 1021 é o tipo silvestre.

A fixación do nitróxeno por S meliloti é interferida polo modificador plástico bisfenol A.[14]

Simbiose editar

 
Nódulo indeterminado.

A capacidade de simbiose de S. meliloti débese a xenes que están situados no megaplásmido pSymA.[15] Unha vez que se infiltra no nódulo, a bacteria sofre unha nodulación indeterminada con plantas como as do xénero Medicago. Esta relación simbiótica non se comprende totalmente, xa que parece ser prexudicial para a bacteria porque cando está dentro dos nódulos radiculares diferénciase terminalmente en bacteroides e perde a capacidade de reproducirse independentemente no ambiente do solo.[16]

A simbiose entre S. meliloti e as súas plantas hóspede empeza cando a planta segrega un conxunto de betaínas e flavonoides na rizosfera, como: 4,4′-dihidroxi-2′-metoxichalcona,[17] crisoeriol,[18] cinarosida,[18] 4′,7-dihidroxiflavona,[17] 6′′-O-malonilononina,[19] liquiritixenina,[17] luteolina,[20] 3′,5-dimetoxiluteolina,[18] 5-metoxiluteolina,[18] medicarpina,[19] staquidrina,[21] e trigonelina.[21] Estes compostos atraen S. meliloti á superficie dos pelos radicais da planta, onde as bacterias empezan a segregar o factor Nod.

Bacteriófagos editar

 
Placas en S. meliloti causadas por ΦM12.

Describíronse varios bacteriófagos que infectan Sinorhizobium meliloti,[22] que son os seguintes: Φ1,[23] Φ1A,[24] Φ2A,[24] Φ3A,[25] Φ4 (=ΦNM8),[26] Φ5t (=ΦNM3),[26] Φ6 (=ΦNM4),[26] Φ7 (=ΦNM9),[26] Φ7a,[23] Φ9 (=ΦCM2),[26] Φ11 (=ΦCM9),[26] Φ12 (=ΦCM6),[26] Φ13,[27] Φ16,[27] Φ16-3,[28] Φ16a,[27] Φ16B,[25] Φ27,[23] Φ32,[28] Φ36,[28] Φ38,[28] Φ43,[23] Φ70,[23] Φ72,[28] Φ111,[28] Φ143,[28] Φ145,[28] Φ147,[28] Φ151,[28] Φ152,[28] Φ160,[28] Φ161,[28] Φ166,[28] Φ2011,[29] ΦA3,[23] ΦA8,[23] ΦA161,[29] ΦAL1,[30] ΦCM1,[29] ΦCM3,[29] ΦCM4,[29] ΦCM5,[29] ΦCM7,[29] ΦCM8,[29] ΦCM20,[29] ΦCM21,[29] ΦDF2,[30] Φf2D,[30] ΦF4,[31] ΦFAR,[30] ΦFM1,[29] ΦK1,[32] ΦL1,[27] ΦL3,[27] ΦL5,[27] ΦL7,[27] ΦL10,[27] ΦL20,[27] ΦL21,[27] ΦL29,[27] ΦL31,[27] ΦL32,[27] ΦL53,[27] ΦL54,[27] ΦL55,[27] ΦL56,[27] ΦL57,[27] ΦL60,[27] ΦL61,[27] ΦL62,[27] ΦLO0,[30] ΦLS5B,[29] ΦM1,[22][33] ΦM1,[22][34] ΦM1-5,[29] ΦM2,[35] ΦM3,[23] ΦM4,[23] ΦM5,[22][23][36] ΦM5 (=ΦF20),[22][33] ΦM5N1,[29] ΦM6,[33] ΦM7,[33] ΦM8,[35] ΦM9,[33] ΦM10,[33] ΦM11,[33] ΦM11S,[29] ΦM12,[33][37] ΦM14,[33] ΦM14S,[29] ΦM19,[38] ΦM20S,[29][39] ΦM23S,[29] ΦM26S,[29] ΦM27S,[29] ΦMl,[40] ΦMM1C,[29] ΦMM1H,[29] ΦMP1,[41] ΦMP2,[41] ΦMP3,[41] ΦMP4,[41] ΦN2,[23] ΦN3,[23] ΦN4,[23] ΦN9,[23] ΦNM1,[29][39] ΦNM2,[29][39] ΦNM6,[29][39] ΦNM7,[29][39] ΦP6,[31] ΦP10,[31] ΦP33,[31] ΦP45,[31] ΦPBC5,[42] ΦRm108,[43] ΦRmp26,[44] ΦRmp36,[44] ΦRmp38,[44] ΦRmp46,[44] ΦRmp50,[44] ΦRmp52,[44] ΦRmp61,[44] ΦRmp64,[44] ΦRmp67,[44] ΦRmp79,[44] ΦRmp80,[44] ΦRmp85,[44] ΦRmp86,[44] ΦRmp88,[44] ΦRmp90,[44] ΦRmp145,[44] ΦSP,[23] ΦSSSS304,[45] ΦSSSS305,[45] ΦSSSS307,[45] ΦSSSS308,[45] e ΦT1.[23] Destes foron secuenciados ΦM5[36], ΦM12[37], Φ16-3[46] e ΦPBC5.[42]

Notas editar

  1. Ba S, Willems A, de Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J (April 2002). "Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa". Systematic and Applied Microbiology 25 (1): 130–45. PMID 12086180. doi:10.1078/0723-2020-00091. 
  2. Maâtallah J, Berraho EB, Muñoz S, Sanjuan J, Lluch C (2002). "Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco". Journal of Applied Microbiology 93 (4): 531–40. PMID 12234335. doi:10.1046/j.1365-2672.2002.01718.x. 
  3. Rogel MA, Ormeño-Orrillo E, Martinez Romero E (April 2011). "Symbiovars in rhizobia reflect bacterial adaptation to legumes". Systematic and Applied Microbiology 34 (2): 96–104. PMID 21306854. doi:10.1016/j.syapm.2010.11.015. 
  4. León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J (September 2009). "Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range". Systematic and Applied Microbiology 32 (6): 413–20. PMID 19477097. doi:10.1016/j.syapm.2009.04.003. 
  5. Villegas Mdel C, Rome S, Mauré L, Domergue O, Gardan L, Bailly X, Cleyet-Marel JC, Brunel B (November 2006). "Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti". Systematic and Applied Microbiology 29 (7): 526–38. PMID 16413160. doi:10.1016/j.syapm.2005.12.008. 
  6. Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (January 2007). "Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti". Archives of Microbiology 187 (1): 79–85. PMID 17019605. doi:10.1007/s00203-006-0173-x. 
  7. Gubry-Rangin C, Béna G, Cleyet-Marel JC, Brunel B (October 2013). "Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species". Systematic and Applied Microbiology 36 (7): 490–6. PMID 23871297. doi:10.1016/j.syapm.2013.06.004. 
  8. Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G (July 2007). "Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species". Journal of Bacteriology 189 (14): 5223–36. PMC 1951869. PMID 17496100. doi:10.1128/JB.00105-07. 
  9. Sinorhizobium meliloti — Nitrogen–Fixer in the Grassland (en inglés). Academic Press. 2014-01-01. ISBN 9780124172340. 
  10. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, et al. (July 2001). "The composite genome of the legume symbiont Sinorhizobium meliloti". Science 293 (5530): 668–72. PMID 11474104. doi:10.1126/science.1060966. 
  11. 11,0 11,1 Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, et al. (May 2011). "Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti". BMC Genomics 12: 235. PMC 3164228. PMID 21569405. doi:10.1186/1471-2164-12-235. 
  12. The sequence hasn't been officially announced, but is available at NCBI: chromosome, pSymA, pSymB, and pRM41a.
  13. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A (August 2011). "The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome". Journal of Biotechnology 155 (1): 20–33. PMID 21396969. doi:10.1016/j.jbiotec.2010.12.018. 
  14. Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (June 2007). "Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants". Proceedings of the National Academy of Sciences of the United States of America 104 (24): 10282–7. Bibcode:2007PNAS..10410282F. PMC 1885820. PMID 17548832. doi:10.1073/pnas.0611710104. 
  15. DiCenzo, George; Wellappili, Deelaka; Brian Golding, G; Finan, Turlough (2018-03-21). "Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome". G3-Genes Genomes Genetics 8 (5): 1711–1720. PMC 5940162. PMID 29563186. doi:10.1534/g3.117.300405. 
  16. Checcucci A, Azzarello E, Bazzicalupo M, Galardini M, Lagomarsino A, Mancuso S, Marti L, Marzano MC, Mocali S, Squartini A, Zanardo M, Mengoni A (2016-06-13). "Mixed Nodule Infection in Sinorhizobium meliloti-Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior". Frontiers in Plant Science 7: 835. PMC 4904023. PMID 27379128. doi:10.3389/fpls.2016.00835. 
  17. 17,0 17,1 17,2 Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (November 1989). "A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti". Plant Physiology 91 (3): 842–7. PMC 1062085. PMID 16667146. doi:10.1104/pp.91.3.842. 
  18. 18,0 18,1 18,2 18,3 Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (January 1990). "Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti". Plant Physiology 92 (1): 116–22. PMC 1062256. PMID 16667231. doi:10.1104/pp.92.1.116. 
  19. 19,0 19,1 Dakora FD, Joseph CM, Phillips DA (March 1993). "Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti". Plant Physiology 101 (3): 819–824. PMC 158695. PMID 12231731. doi:10.1104/pp.101.3.819. 
  20. Peters NK, Frost JW, Long SR (August 1986). "A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes". Science 233 (4767): 977–80. Bibcode:1986Sci...233..977P. PMID 3738520. doi:10.1126/science.3738520. 
  21. 21,0 21,1 Phillips DA, Joseph CM, Maxwell CA (August 1992). "Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti". Plant Physiology 99 (4): 1526–31. PMC 1080658. PMID 16669069. doi:10.1104/pp.99.4.1526. 
  22. 22,0 22,1 22,2 22,3 22,4 S A denominación sistemática dos bacteriófagos utilízase raramente na literatura científica, polo que varios fagos acaban por compartir un mesmo nome. Así, aínda que existe un fago de ARN chamado ΦM12, que infecta as enterobacterias, non é sinónimo do fago de ADN ΦM12 listqado aquí. O mesmo pode acontecer con outros fagos desta lista. Hai que indicar tamén que nesta lista hai dous fagos que foron nomeados independentemente como ΦM5.
  23. 23,00 23,01 23,02 23,03 23,04 23,05 23,06 23,07 23,08 23,09 23,10 23,11 23,12 23,13 23,14 23,15 Lesley SM (1982). "A bacteriophage typing system for Rhizobium meliloti.". Canadian Journal of Microbiology 28 (2): 180–189. doi:10.1139/m82-024. 
  24. 24,0 24,1 Singh RB, Dhar B, Singh BD (1986). "Morphology and general characteristics of viruses active against cowpea Rhizobium CB756 and 32H1". Archives of Virology 64 (1): 17–24. PMID 7377972. doi:10.1002/jobm.3620270309. 
  25. 25,0 25,1 Handelsman J, Ugalde RA, Brill WJ (March 1984). "Rhizobium meliloti competitiveness and the alfalfa agglutinin". Journal of Bacteriology 157 (3): 703–7. PMC 215314. PMID 6698937. 
  26. 26,0 26,1 26,2 26,3 26,4 26,5 26,6 Krsmanovi-Simic D, Werquin M (1977). "Etude des bactériophages de Rhizobium meliloti." [Study of bacteriophages of Rhizobium meliloti]. Comptes Rendus de l'Académie des Sciences, Série D (en French) 284: 1851–1854.  and Krsmanovi-Simic D, Werquin M (1973). "Etude des bactériophages de Rhizobium meliloti." [Study of bacteriophages of Rhizobium meliloti]. Comptes Rendus de l'Académie des Sciences, Série D (en French) 276 (19): 2745–8. PMID 4198859. 
  27. 27,00 27,01 27,02 27,03 27,04 27,05 27,06 27,07 27,08 27,09 27,10 27,11 27,12 27,13 27,14 27,15 27,16 27,17 27,18 27,19 27,20 Kowalski M (1967). "Transduction in Rhizobium meliloti". Acta Microbiologica Polonica 16 (1): 7–11. PMID 4166074. doi:10.1007/BF02661838.  Note that this article was reprinted in Plant and Soil (1971) 35 (1): 63—66, which is where the URL and doi direct to.
  28. 28,00 28,01 28,02 28,03 28,04 28,05 28,06 28,07 28,08 28,09 28,10 28,11 28,12 28,13 Szende K, Ördögh F (1960). "Die Lysogenie von Rhizobium meliloti.". Naturwissenschaften 47 (17): 404–405. Bibcode:1960NW.....47..404S. doi:10.1007/BF00631269. Arquivado dende o orixinal o 16 de setembro de 2019. Consultado o 22 de novembro de 2018. 
    The full genome of this phage is available at NCBI
  29. 29,00 29,01 29,02 29,03 29,04 29,05 29,06 29,07 29,08 29,09 29,10 29,11 29,12 29,13 29,14 29,15 29,16 29,17 29,18 29,19 29,20 29,21 29,22 29,23 29,24 29,25 Werquin M, Ackermann HW, Levesque RC (January 1988). "A Study of 33 Bacteriophages of Rhizobium meliloti". Applied and Environmental Microbiology 54 (1): 188–196. PMC 202420. PMID 16347525. Arquivado dende o orixinal o 16 de setembro de 2019. Consultado o 22 de novembro de 2018. 
  30. 30,0 30,1 30,2 30,3 30,4 Corral E, Montoya E, Olivares J (1978). "Sensitivity to phages in Rhizobium meliloti as a plasmid consequence.". Microbios Letters 5: 77–80. 
  31. 31,0 31,1 31,2 31,3 31,4 Kowalski M, Małek W, Czopska-Dolecka J, Szlachetka M (2004). "The effect of rhizobiophages on Sinorhizobium melilotiMedicago sativa symbiosis.". Biology and Fertility of Soils 39 (4): 292–294. doi:10.1007/s00374-004-0721-y. 
  32. Wdowiak S, Małek W, Grzadka M (February 2000). "Morphology and general characteristics of phages specific for Astragalus cicer rhizobia". Current Microbiology 40 (2): 110–3. PMID 10594224. doi:10.1007/s002849910021. 
  33. 33,0 33,1 33,2 33,3 33,4 33,5 33,6 33,7 33,8 Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (July 1984). "General transduction in Rhizobium meliloti". Journal of Bacteriology 159 (1): 120–4. PMC 215601. PMID 6330024. 
  34. Małek W (1990). "Properties of the transducing phage M1 of Rhizobium meliloti.". Journal of Basic Microbiology 30 (1): 43–50. doi:10.1002/jobm.3620300114. 
  35. 35,0 35,1 Johansen E, Finan TM, Gefter ML, Signer ER (October 1984). "Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them". Journal of Bacteriology 160 (1): 454–7. PMC 214744. PMID 6480561. 
  36. 36,0 36,1 Johnson MC, Sena-Veleza M, Washburn BK, Platta GN, Lua S, Brewer TE, Lynna JS, Stroupe ME, Jones KM (December 2017). "Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome". Journal of Structural Biology 200 (3): 343–359. PMID 28842338. doi:10.1016/j.jsb.2017.08.005. 
  37. 37,0 37,1 Brewer Tess E, Elizabeth Stroupe M, Jones Kathryn M (Dec 25, 2013). "The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages". Virology. 450-451: 84–97. PMID 24503070. doi:10.1016/j.virol.2013.11.027. 
  38. Campbell GR, Reuhs BL, Walker GC (October 1998). "Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen". Journal of Bacteriology 180 (20): 5432–6. PMC 107593. PMID 9765576. 
  39. 39,0 39,1 39,2 39,3 39,4 Werquin M, Ackermann HW, Levesque RC (1989). "Characteristics and comparative study of five Rhizobium meliloti bacteriophages.". Current Microbiol. 18 (5): 307–311. doi:10.1007/BF01575946. 
  40. Małek W (1990). "Properties of the transducing phage Ml of Rhizobium meliloti.". Journal of Basic Microbiology 30 (1): 43–50. 
  41. 41,0 41,1 41,2 41,3 Martin MO, Long SR (July 1984). "Generalized transduction in Rhizobium meliloti". Journal of Bacteriology 159 (1): 125–9. PMC 215602. PMID 6330025. 
  42. 42,0 42,1 This phage has never been formally reported in the scientific literature. However, the full genomic sequence has been uploaded to NCBI, available here.
  43. Novikova NI, Bazenova OV, Simarov BV (1987). "Phage sensitivity of natural and mutant strains of alfalfa nodule bacteria differing by cultural and symbiotic properties. (Summary in English)". Agric. Biol. 2: 35–39. 
  44. 44,00 44,01 44,02 44,03 44,04 44,05 44,06 44,07 44,08 44,09 44,10 44,11 44,12 44,13 44,14 44,15 Khanuja SP, Kumar S (1989). "Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups in Rhizobium meliloti". Journal of Genetics 68 (2): 93–108. doi:10.1007/BF02927852. 
  45. 45,0 45,1 45,2 45,3 Sharma RS, Mishra V, Mohmmed A, Babu CR (April 2008). "Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp". Archives of Microbiology 189 (4): 411–8. PMID 17989956. doi:10.1007/s00203-007-0322-x. 
  46. Φ16-3 Complete Genome

Véxase tamén editar

Ligazóns externas editar

Bibliografía editar