Canle iónica regulada por voltaxe: Diferenzas entre revisións

Contido eliminado Contido engadido
Miguelferig (conversa | contribucións)
Miguelferig (conversa | contribucións)
Liña 33:
As [[canle de sodio|canles de sodio]] e de [[canle de calcio reglada por voltaxe|calcio]] reguladas por voltaxe están constituídas por un só polipéptido con catro dominios homólogos. Cada dominio contén 6 hélices alfa que abranguen a membrana. Unha destas hélices, a S4, é a hélice sensible á voltaxe.<ref name="pmid20869590">{{cite journal | vauthors = Catterall WA | title = Ion channel voltage sensors: structure, function, and pathophysiology | journal = Neuron | volume = 67 | issue = 6 | pages = 915–28 | year = 2010 | pmid = 20869590 | pmc = 2950829 | doi = 10.1016/j.neuron.2010.08.021 }}</ref> O segmento S4 contén moitas cargas positivas, polo que unha carga positiva alta fóra da célula repele a hélice, mantendo a canle no seu estado pechado.
 
En xeral, a porción sensible á voltaxe da canle iónica é responsable da detección de cambios no potencial transmembrana que desencadea a apertura ou peche da canle. As hélices alfa S1-4 crese xeralmente que desempeñan este papel. Nas c anles de sodio e potasio, as hélices s4 sensibles á voltaxe conteñen residuos de [[lisina]] ou [[arxinina]] cargados positivamente en motivos repetidos.<ref name="Bezanilla_2005" /> Na estado de repouso, a metade de cada hélice S4 está en contacto co [[citosol]] celular. Coa despolarización, os residuos cargados positivamente nos seus dominios S4 móvense cara a superficie exoplásmica da membrana. Pénsase que as 4 primeiras arxininas explican a corrente de comporta, que se move cara o solvente extracelular por activación da canle en resposta á despolarización da membrana. O movemento de 10–12 destas cargas positivas unidas a proteína desencadea un cambio conformacional que abre a canle.<ref name="MCB_2000" /> Non hai acordo sobre cal é o mecanismo exacto polo cal ocorre este movemento; porén, exemplos de teorías actuais son os modelos chamados canónico, de transportador, de pa e enroscadoretorto.<ref name="Sands_2005">{{cite journal | vauthors = Sands Z, Grottesi A, Sansom MS | title = Voltage-gated ion channels | journal = Current Biology | volume = 15 | issue = 2 | pages = R44–7 | year = 2005 | pmid = 15668152 | doi = 10.1016/j.cub.2004.12.050 }}</ref>
<!--
Movement of the voltage-sensor triggers a conformational change of the gate of the conducting pathway, controlling the flow of ions through the channel.<ref name="Bezanilla_2005" />
 
O movemento do sensor de voltaxe desencadea un cambio conformacional da comporta da vía condutora, controlando o fluxo de ións a través da canle.<ref name="Bezanilla_2005" />
The main functional part of the voltage-sensitive protein domain of these channels generally contains a region composed of S3b and S4 helices, known as the "paddle" due to its shape, which appears to be a [[conserved sequence]], interchangeable across a wide variety of cells and species. A similar voltage sensor paddle has also been found in a family of [[voltage sensitive phosphatase]]s in various species.<ref>{{cite journal | vauthors = Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y | title = Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor | journal = Nature | volume = 435 | issue = 7046 | pages = 1239–43 | date = June 2005 | pmid = 15902207 | pmc = | doi = 10.1038/nature03650 | bibcode = 2005Natur.435.1239M }}</ref> [[Genetic engineering]] of the paddle region from a species of volcano-dwelling [[archaebacteria]] into rat brain potassium channels results in a fully functional ion channel, as long as the whole intact paddle is replaced.<ref name="pmid18004375">{{cite journal | vauthors = Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ | title = Portability of paddle motif function and pharmacology in voltage sensors | journal = Nature | volume = 450 | issue = 7168 | pages = 370–5 | date = November 2007 | pmid = 18004375 | pmc = 2709416 | doi = 10.1038/nature06266 | bibcode = 2007Natur.450..370A }}</ref> This "[[modular]]ity" allows use of simple and inexpensive model systems to study the function of this region, its role in disease, and pharmaceutical control of its behavior rather than being limited to poorly characterized, expensive, and/or difficult to study preparations.<ref name="pmid18004376">{{cite journal | vauthors = Long SB, Tao X, Campbell EB, MacKinnon R | title = Atomic structure of a voltage-dependent K<sup>+</sup> channel in a lipid membrane-like environment | journal = Nature | volume = 450 | issue = 7168 | pages = 376–82 | date = November 2007 | pmid = 18004376 | doi = 10.1038/nature06265 | bibcode = 2007Natur.450..376L }}</ref>
 
TheA mainprincipal functionalparte partfuncional ofdo thedominio voltage-sensitiveproteico proteinsensible domainá ofvoltaxe thesedestas channelscanles generallycontén containsxeralmente aunha regionrexión composedcomposta ofdas hélices S3b ande S4 helices, knowncoñecida ascomo thea "pa" ("''paddle''") duedebido toá itssúa shapeforma, whichque appearsparece toser be aunha [[conservedsecuencia sequenceconservada]], interchangeable acrossintercambiable a widetravés varietydunha ofgran cellsvariedade andde species.células Ae similarespecies. voltageUnha sensor"pa" paddlesensora hasde alsovoltaxe beensimilar foundencontrouse intamén ana familyfamilia ofdas [[voltagefosfatase sensitivesensible phosphataseá voltaxe|fosfatases sensibles á voltaxe]]s inen variousvarias speciesespecies.<ref>{{cite journal | vauthors = Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y | title = Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor | journal = Nature | volume = 435 | issue = 7046 | pages = 1239–43 | date = June 2005 | pmid = 15902207 | pmc = | doi = 10.1038/nature03650 | bibcode = 2005Natur.435.1239M }}</ref> A substitución por [[Geneticenxeñaría engineeringxenética]] ofda therexión paddleda regionpa fromdunha aespecie species of volcano-dwellingde [[archaebacteriaarquea]] intoque rathabita brainen potassiumzonas channelsvolcánicas resultsa incanles ade fullypotasio functionalde ioncerebro channelde rata ten como resultado unha canle iónica completamente funcional, ascon longtal asde theque wholese intactsubstitúa paddlea "pa" isintacta replacedcompleta.<ref name="pmid18004375">{{cite journal | vauthors = Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ | title = Portability of paddle motif function and pharmacology in voltage sensors | journal = Nature | volume = 450 | issue = 7168 | pages = 370–5 | date = November 2007 | pmid = 18004375 | pmc = 2709416 | doi = 10.1038/nature06266 | bibcode = 2007Natur.450..370A }}</ref> ThisEsta "[[modular]]itymodularidade" allowspermite useo ofuso simplede andsistemas inexpensivemodelo modelsimple systemse tobarato studypara theestudar functiona offunción thisdesta regionrexión, itso roleseu inpapel diseaseen enfermidades, ande pharmaceuticalo control offarmacéutico itsdo behaviorseu rathercomportamento thanen beingvez limitedde toestar poorlylimitado characterized,a expensive,preparacións and/ordifíciles difficultde toestudar e studypouco preparationscaracterizadas.<ref name="pmid18004376">{{cite journal | vauthors = Long SB, Tao X, Campbell EB, MacKinnon R | title = Atomic structure of a voltage-dependent K<sup>+</sup> channel in a lipid membrane-like environment | journal = Nature | volume = 450 | issue = 7168 | pages = 376–82 | date = November 2007 | pmid = 18004376 | doi = 10.1038/nature06265 | bibcode = 2007Natur.450..376L }}</ref>
<!--
Although voltage-gated ion channels are typically activated by membrane [[depolarization]], some channels, such as [[inward-rectifier potassium ion channel]]s, are activated instead by [[hyperpolarization (biology)|hyperpolarization]].