Teoría neutralista da evolución molecular: Diferenzas entre revisións

Contido eliminado Contido engadido
Miguelferig (conversa | contribucións)
Sen resumo de edición
Miguelferig (conversa | contribucións)
Liña 5:
 
== Introdución ==
<!--
While some scientists, such as Freese (1962) <ref>Freese, E. (1962). On the evolution of base composition of DNA. J THeor Biol, 3:82-101.</ref> and Freese and Yoshida (1965),<ref>Freese, E. and Yoshida, A. (1965). The role of mutations in evolution. In V Bryson, and H J Vogel, eds. Evolving Genes and Proteins, pp. 341-55. Academic, New York.</ref> had suggested that neutral [[mutation]]s were probably widespread, a coherent theory of neutral evolution was proposed by [[Motoo Kimura]] in 1968,<ref>Kimura M. (1968). Evolutionary Rate at the Molecular Level. ''Nature'' 217:624-6.</ref> and by King and Jukes independently in 1969.<ref>King JL, Jukes TH. (1969). Non-Darwinian Evolution. ''Science'' 164:788-97.</ref>
 
WhileAínda someque scientists,algúns suchcientíficos ascomo Freese (1962) <ref>Freese, E. (1962). On the evolution of base composition of DNA. J THeor Biol, 3:82-101.</ref> and Freese and Yoshida (1965),<ref>Freese, E. and Yoshida, A. (1965). The role of mutations in evolution. In V Bryson, and H J Vogel, eds. Evolving Genes and Proteins, pp. 341-55. Academic, New York.</ref> hadindicaron suggestedque thatas neutralmutacións [[mutation]]sneutras wereestaban probablyprobablemente widespreadmoi estendidas, anon coherentse theorypropuxo ofunha neutralteoría evolutioncoherente wasda proposedevolución byneutralista ata que o fixeron, independentemente, [[Motoo Kimura]] inen 1968,<ref>Kimura M. (1968). Evolutionary Rate at the Molecular Level. ''Nature'' 217:624-6.</ref> and bye King ande Jukes independently inen 1969.<ref>King JL, Jukes TH. (1969). Non-Darwinian Evolution. ''Science'' 164:788-97.</ref>
Kimura, King, and Jukes suggested that when one compares the [[genome]]s of existing species, the vast majority of molecular differences are selectively "neutral", i.e. the molecular changes represented by these differences do not influence the [[fitness (biology)|fitness]] of organisms. As a result, the theory regards these genomic features as neither subject to, nor explicable by, natural selection. This view is based in part on the [[Codon degeneracy|degenerate genetic code]], in which sequences of three nucleotides ([[codon]]s) may differ and yet encode the same [[amino acid]] (''GCC'' and ''GCA'' both encode [[alanine]], for example). Consequently, many potential single-nucleotide changes are in effect "silent" or "unexpressed" (see [[synonymous substitution|synonymous or silent substitution]]). Such changes are presumed to have little or no biological effect.
 
Kimura, King, e Jukes suxeriron que cando se comparan os [[xenoma]]s das especies existentes, a gran maioría das diferenzas moleculares son "neutras" en canto á selección natural, é dicir, os cambios moleculares representados por estas diferenzas non inflúen na eficiencia biolóxica ou ''[[fitness (bioloxía)|fitness]]'' dos organismos. Como resultado, a teoría considera que estas características xenómicas non están suxeitas nin se poden explicar por selección natural. Esta idea está baseada en parte en que o [[código xenético]] está [[dexeneración do codón|dexenerado]], que quere dicir que pode haber varias secuencias distintas de tres [[nucleótido]]s ([[codón]]s) que codifican o mesmo [[aminoácido]] (por exemplo, os codóns ''GCC'' e ''GCA'' codifican ambos a [[alanina]]). Consecuentemente, moitos cambios potenciais dun só nucleótido son "silenciosos" ou "non expresados", se ocurre que o codón que codificaba un aminoácido cambia a outro codó que tamén codificaba ese mesmo aminoácido. Tales cambios considérase que teñen pouco ou ningún efecto biolóxico.
A second hypothesis of the neutral theory is that most evolutionary change is the result of [[genetic drift]] acting on neutral [[allele]]s, rather than for example [[genetic hitchhiking]] of a neutral allele due to [[genetic linkage]] with non-neutral alleles. After appearing by mutation, a neutral allele may become more common within the population via [[genetic drift]]. Usually, it will be lost, or in rare cases it may become [[Fixation (population genetics)|fixed]], meaning that the new allele becomes standard in the population. This stochastic process is assumed to obey equations describing random genetic drift by means of accidents of sampling.
 
Unha segunda hipótese da teoría neutralista é que a maioría dos cambios evolutivos son o resultado da [[deriva xenética]] que actúa sobre os [àlelo]]s neutros, en vez de, por exemplo, do [[autostop xenético]] dun alelo neutro debido a que ten un [[ligamento xenético]] con alelos non neutros. Un alelo neutro, unha vez que aparece por mutación, pode facerse máis común na poboación por causa da deriva xenética. Usualmente, o alelo vaise perder, pero en raros casos pode [[Fixación (xenética de poboacións)|fixarse]] na poboación, o que significa que o novo alelo faise o alelo estándar na poboación. Este proceso estocástico considérase que obedece a ecuacións que describen a deriva xenética aleatoria por causa de accidentes de mostraxe.
According to the neutral theory, mutations appear at rate μ in each of the 2N copies of a gene, and fix with probability 1/(2N). This means that if all mutations were neutral, the rate at which fixed differences accumulate between divergent populations is predicted to be equal to the per-individual mutation rate, e.g. during errors in [[DNA replication]]; both are equal to μ. When the proportion of mutations that are neutral is constant, so is the divergence rate between populations. This provides a rationale for the [[molecular clock]], although the discovery of a molecular clock predated neutral theory.<ref name=Zuckerkand62>{{cite book | author = [[Emile Zuckerkandl|Zuckerkandl, E.]] and [[Linus Pauling|Pauling, L.B.]] | year = 1962 | title = Horizons in Biochemistry | chapter = Molecular disease, evolution, and genetic heterogeneity | editor = Kasha, M. and Pullman, B (editors) | pages = 189–225 | publisher = Academic Press, New York}}</ref>
 
AccordingSegundo toa theteoría neutral theoryneutralista, mutationsas appearmutacións ataparecen ratecunha taxa μ in each ofen thecada 2N copiescopias ofdun a genexene, ande fíxanse fixcunha withprobabilidade probabilityde 1/(2N). ThisIsto meanssignifica thatue ifse alltodas mutationsas weremutacións neutralfosen neutras, thea ratefrecuencia atá whichcal fixedse differencesacumularían accumulateas betweendiferenzas divergentfixadas populationsentre ispoboacións predicteddiverxentes topode bepredicirse equalque toé theigual per-individualá mutationtaxa ratede mutación por individuo, e.g.por duringexemplo, errorsdurante inos erros que ocorren na [[DNAreplicación do replicationADN]]; bothambas areson equaliguais toa μ. WhenCando thea proportionproporción ofde mutationsmutacións thatque areson neutralneutras isé constantconstante, sotamén iso theé divergencea ratetaxa betweende populationsdiverxencia entre poboacións. ThisIsto providesproporciona aunha rationaleexplicación forpara theo [[molecularreloxo clockmolecular]], althoughaínda theque discoveryo ofdescubrimento adun reloxo molecular clocké anterior predatedá neutralteoría theoryneutralista.<ref name=Zuckerkand62>{{cite book | author = [[Emile Zuckerkandl|Zuckerkandl, E.]] and [[Linus Pauling|Pauling, L.B.]] | year = 1962 | title = Horizons in Biochemistry | chapter = Molecular disease, evolution, and genetic heterogeneity | editor = Kasha, M. and Pullman, B (editors) | pages = 189–225 | publisher = Academic Press, New York}}</ref>
Many [[molecular biology|molecular biologists]] and [[population genetics|population geneticists]] also contributed to the development of the neutral theory, which is different from the neo-Darwinian theory.<ref name=Kimura83/><ref name=Nei2005>Nei, M. (2005). Selectionism and neutralism in molecular evolution. ''Mol Biol Evol'', 22: 2318-42</ref><ref name=Nei2013>Nei, M. (2013). Mutation-driven evolution. Oxford University Press, Oxford</ref>
 
ManyMoitos [[bioloxía molecular biology|molecularbiólogos biologistsmoleculares]] ande [[populationxenética geneticsde poboacións|populationxenetistas geneticistsde poboacións]] alsotamén contributedcontriburon toao thedesenvolvemento developmentda ofteoría the neutral theoryneutralista, which isque differenté fromdiferente theda neo-Darwinianteoría theoryneodarwinista.<ref name=Kimura83/><ref name=Nei2005>Nei, M. (2005). Selectionism and neutralism in molecular evolution. ''Mol Biol Evol'', 22: 2318-42</ref><ref name=Nei2013>Nei, M. (2013). Mutation-driven evolution. Oxford University Press, Oxford</ref>
Neutral theory does not deny the occurrence of natural selection. Hughes writes: "Evolutionary biologists typically distinguish two main types of natural selection: ''[[purifying selection]]'', which acts to eliminate deleterious mutations; and ''positive (Darwinian) selection'', which favors advantageous mutations. Positive selection can, in turn, be further subdivided into [[directional selection]], which tends toward fixation of an advantageous allele, and [[balancing selection]], which maintains a [[Polymorphism (biology)|polymorphism]]. The neutral theory of molecular evolution predicts that purifying selection is ubiquitous, but that both forms of positive selection are rare, whereas not denying the importance of positive selection in the origin of adaptations."<ref name="hughes2">{{cite journal|first=Austin L.|last=Hughes|title=Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level|journal=Heredity|volume=99|year=2007|pages=364–373|doi=10.1038/sj.hdy.6801031|pmid=17622265|issue=4}}</ref> In another essay, Hughes writes: "Purifying selection is the norm in the evolution of protein coding genes. Positive selection is a relative rarity &mdash; but of great interest, precisely because it represents a departure from the norm."<ref name="hughes1">{{cite book|first=Austin L.|last=Hughes|year=2000|title=Adaptive Evolution of Genes and Genomes|publisher=Oxford University Press|page=53|isbn=0-19-511626-7}}</ref> A more general and more recent view of molecular evolution is presented by [[Masatoshi Nei|Nei]].<ref name=Nei2013 />
 
NeutralA theoryteoría doesneutralista notnon denynega theque occurrenceexista ofselección natural selection. Hughes writesescribiu: "Os biólogos evolucionistas distinguen tipicamente dous tipos principais de selección natural: ''[[selección purificadora]]'', que actúa eliminando as mutacións deletéreas; e ''selección positiva (darwiniana)'', que favorece as mutacións vantaxosas. A selección positiva pode, á súa vez, ser subdividida en [[selección direccional]], que tende á fixación dun alelo vantaxoso, e [[selección equilibrada]] ou balanceada, que mantén un [[polimorfismo (bioloxía)|polimorfismo]]. Ateoría neutralista da evolución molecular predí que a selección purificadora está sempre presente, pero que ambas as formas de selección positiva son raras, aínda que non nega a importancia da selección positiva na orixe das adaptacións". (Ver orixinal:<ref>"Evolutionary biologists typically distinguish two main types of natural selection: ''[[purifying selection]]'', which acts to eliminate deleterious mutations; and ''positive (Darwinian) selection'', which favors advantageous mutations. Positive selection can, in turn, be further subdivided into [[directional selection]], which tends toward fixation of an advantageous allele, and [[balancing selection]], which maintains a [[Polymorphism (biology)|polymorphism]]. The neutral theory of molecular evolution predicts that purifying selection is ubiquitous, but that both forms of positive selection are rare, whereas not denying the importance of positive selection in the origin of adaptations."</ref>).<ref name="hughes2">{{cite journal|first=Austin L.|last=Hughes|title=Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level|journal=Heredity|volume=99|year=2007|pages=364–373|doi=10.1038/sj.hdy.6801031|pmid=17622265|issue=4}}</ref> InNoutro another essayensaio, Hughes writesescribiu: "A selección purificante é a norma na evolución dos xenes codificantes de proteínas. A selección positiva é unha relativa rareza, peroé de grande interese, precisamente porque representa unha desviación da norma". (Ver orixinal:<ref>"Purifying selection is the norm in the evolution of protein coding genes. Positive selection is a relative rarity &mdash; but of great interest, precisely because it represents a departure from the norm."</ref>). <ref name="hughes1">{{cite book|first=Austin L.|last=Hughes|year=2000|title=Adaptive Evolution of Genes and Genomes|publisher=Oxford University Press|page=53|isbn=0-19-511626-7}}</ref> A more general and more recent view of molecular evolution is presented by [[Masatoshi Nei|Nei]].<ref name=Nei2013 />
== O debagte "neutralista–selectionista" ==
 
== O debagtedebate "neutralista–selectionista" ==
<!--
{{see also|History of evolutionary thought|History of molecular evolution}}
A heated debate arose when Kimura's theory was published, largely revolving around the relative percentages of alleles that are "neutral" versus "non-neutral" in any given [[genome]]. Contrary to the perception of many onlookers, the debate was not about whether natural selection does occur. Kimura argued that [[molecular evolution]] is dominated by selectively neutral evolution but at the [[phenotypic]] level, changes in characters were probably dominated by [[natural selection]] rather than [[genetic drift]].<ref>''Provine (1991)</ref>
Liña 26 ⟶ 27:
There are a large number of statistical methods for testing whether neutral theory is a good description of evolution (e.g., [[McDonald-Kreitman test]] <ref>{{cite journal|last=Kreitman|first=Martin|title=M D S P A H|journal=Annual Review of Genomics and Human Genetics|year= 2000|volume=1|issue=1|pages=539–559|doi=10.1146/annurev.genom.1.1.539|pmid=11701640}}</ref>), and many authors claimed detection of selection (Fay et al. 2002,<ref>Fay, J. C., Wyckoff, G. J., and Wu, C. I. (2002). Testing the neutral theory of molecular evolution with genomic data from Drosophila. ''Nature'', 415:1024-6</ref> Begun et al. 2007,<ref>Begun, D. J., Holloway, A. K., Stevens, K., Hillier, L. W., Poh, Y. P. et al. (2007). Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. ''PLoS Biol'', 5:e310.</ref> Shapiro et al. 2007,<ref>Shapiro J. A., Huang W., Zhang C., Hubisz M. J., Lu J. et al. 2007. Adaptive genic evolution in the Drosophila genomes. ''Proc Natl Acad Sci USA'' 104:2271–76.</ref> Hahn 2008,<ref name="Hahn">{{cite journal | author = Hahn, M.W. | year = 2008 | title=Toward a selection theory of molecular evolution |journal=Evolution |pages=255–265 |volume=62 |doi=10.1111/j.1558-5646.2007.00308.x | pmid=18302709}}</ref> Akey 2009.<ref>Akey J. M. (2009). Constructing genomic maps of positive selection in humans: where do we go from here? ''Genome Res'' 19:711–22.</ref>). However, Nei et al. (2010).<ref>Nei, M., Suzuki, Y., and M. Nozawa. (2010). The neutral theory of molecular evolution in the genomic era. Annu Rev Genom Hum Genet. 11:265-89.</ref> have argued that their methods for claiming so depend on many assumptions which are not biologically justified.
-->
 
== Notas ==
{{Listaref|2}}