ATPase V: Diferenzas entre revisións

Contido eliminado Contido engadido
Miguelferig (conversa | contribucións)
Miguelferig (conversa | contribucións)
Sen resumo de edición
Liña 201:
==Regulación da actividade da ATPase vacuolar==
 
A regulación ''in vivo'' da actividade da ATPase vacuolar realízase pola disocaición reversible do dominio V<sub>1</sub> do dominio V<sub>o</sub>. despois da ensamblaxe inicial, tanto a ATPase V do insecto ''[[Manduca sexta]]'' coma a de lévedo poden desensamblarse reversiblemente nos dominios V<sub>o</sub> e V<sub>1</sub> libres despois de 2 a 5 minutos de privación de [[glicosa]]<ref name=Kane95/>. A desensamblaxe reversible pode ser un mecanismo xeral para regular a actividade da ATPase V, xa que existe en lévedos e insectos. Proponse que a reensamblaxe é axudada por un complexo chamado RAVE (regulador da H<sup>+</sup>-ATPase das membranas vacuolares e [[endosoma|endosómicas]]).<ref (name=KaneSmardon03>{{cite journal |author=Kane andPM, Smardon, AM |title=Assembly and regulation of the yeast vacuolar {{chem|H|+}}-ATPase |journal=J. Bioenerg. Biomembr. |volume=35 |issue=4 |pages=313–21 |year=2003) |month=August |pmid=14635777 |doi=10.1023/A:1025724814656 }}</ref> A desensamblaxe e reensamblaxe das ATPases V non require a síntese de novas proteínas pero necesita unha rede [[microtúbulo|microtubular]] intacta.(<ref name=Holliday00>{{cite journal |author=Holliday, LS |title=The amino-terminal domain of the B subunit of vacuolar {{chem|H|+}}-ATPase contains a filamentous actin binding site |journal=J. Biol. Chem. |volume=275 |issue=41 |pages=32331–7 |year=2000) |month=October |pmid=10915794 |doi=10.1074/jbc.M004795200 |url=http://www.jbc.org/cgi/pmidlookup?view=long&pmid=10915794|author-separator= |author2= Lu M |author3= Lee BS |author4=and others |displayauthors=3 }}</ref>
 
==HumanDoenzas diseaseshumanas==
 
===OsteopetrosisOsteopetrose===
 
[[Osteopetrosis]] is generic name that represents a group of heritable conditions in which there is a defect in [[Osteoclast|osteoclastic bone resorption]]. Both dominant and recessive osteopetrosis occur in humans {Michigami, 2002; Frattini, 2000}. Autosomal dominant osteopetrosis shows mild symptoms in adults experiencing frequent bone fractures due to brittle bones {Michigami, 2002}. A more severe form of osteopetrosis is termed autosomal recessive infantile malignant osteopetrosis {Frattini, 2000; Sobacchi, 2001; Fasth, 1999}. Three genes that are responsible for recessive osteopetrosis in humans have been identified. They are all directly involved in the proton generation and secretion pathways that are essential for bone resorption. One gene is [[carbonic anhydrase]] II (CAII), which, when mutated, causes osteopetrosis with [[renal tubular acidosis]](type 3) {Sly, 1983}. Mutations to the chloride channel ClC7 gene also lead to both dominant and recessive osteopetrosis {Michigami, 2002}. Approximately 50% of patients with recessive infantile malignant osteopetrosis have mutations to the a3 subunit isoform of V-ATPase {Sobacchi, 2001; Kornak, 2000; Frattini, 2003}. In humans, 26 mutations have been identified in V-ATPase subunit isoform a3, found in osteoclasts, that result in the bone disease autosomal recessive osteopetrosis {Frattini, 2000; Kornak, 2000; Sobacchi, 2001; Susani, 2004}.
Liña 232:
*{{cite journal |author=Frattini A |title=Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis |journal=Nat. Genet. |volume=25 |issue=3 |pages=343–6 |date=July 2000 |pmid=10888887 |doi=10.1038/77131 |author-separator= |author2= Orchard PJ |author3= Sobacchi C |author4=and others |displayauthors=3 }}
*{{cite journal |author=Frattini A |title=Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis |journal=J. Bone Miner. Res. |volume=18 |issue=10 |pages=1740–7 |date=October 2003 |pmid=14584882 |doi=10.1359/jbmr.2003.18.10.1740 |author-separator= |author2= Pangrazio A |author3= Susani L |author4=and others |displayauthors=3 }}
*{{cite journal |author=Holliday LS |title=The amino-terminal domain of the B subunit of vacuolar {{chem|H|+}}-ATPase contains a filamentous actin binding site |journal=J. Biol. Chem. |volume=275 |issue=41 |pages=32331–7 |year=2000 |month=October |pmid=10915794 |doi=10.1074/jbc.M004795200 |url=http://www.jbc.org/cgi/pmidlookup?view=long&pmid=10915794|author-separator= |author2= Lu M |author3= Lee BS |author4=and others |displayauthors=3 }}
*{{cite journal |author=Kane PM, Smardon AM |title=Assembly and regulation of the yeast vacuolar {{chem|H|+}}-ATPase |journal=J. Bioenerg. Biomembr. |volume=35 |issue=4 |pages=313–21 |year=2003 |month=August |pmid=14635777 |doi=10.1023/A:1025724814656 }}
*{{cite journal |author=Karet FE |title=Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue=11 |pages=6337–42 |date=May 1998 |pmid=9600966 |pmc=27686 |url=http://www.pnas.org/cgi/pmidlookup?view=long&pmid=9600966 |bibcode=1998PNAS...95.6337K |last2=Gainza |last3=Gyory |last4=Unwin |last5=Wrong |last6=Tanner |last7=Nayir |last8=Alpay |last9=Santos |doi=10.1073/pnas.95.11.6337|author-separator= |displayauthors=3 |last10=Hulton |first10=S. A. |last11=Bakkaloglu |first11=A. |last12=Ozen |first12=S. |last13=Cunningham |first13=M. J. |last14=Di Pietro |first14=A. |last15=Walker |first15=W. G. |last16=Lifton |first16=R. P. }}
*{{cite journal |author=Karet FE |title=Mutations in the gene encoding B1 subunit of {{chem|H|+}}-ATPase cause renal tubular acidosis with sensorineural deafness |journal=Nat. Genet. |volume=21 |issue=1 |pages=84–90 |year=1999 |month=January |pmid=9916796 |doi=10.1038/5022 |author-separator= |author2= Finberg KE |author3= Nelson RD |author4=and others |displayauthors=3 }}