→Números transcendentes
→Demostración: completo |
|||
Liña 31:
Co que chegamos á conclusión de que ''n'' tamén é par. Pero iso non é posible, porque levaría a que ''m'' e ''n'' tivesen un factor común, e iso descartámolo ao comezo. Esta [[reductio ad absurdum]] é a que nos indica que as nosas premisas eran erróneas e que <math>\sqrt{2}</math> non pode ser racional.
==Números
De especial relevancia son os chamados '''[[número trascendente|números trascendentes]]''', que non poden ser solución de ningunha ecuación alxebraica. Por exemplo, o [[número áureo]] é unha das raíces da ecuación x<sup>2</sup>-x-1=0, polo que non é un número trascendente. Pola contra, [[número pi|pi]] e [[Número e|e]] si son trascendentes.
|